• Pitt
  • Health Sciences
  • UPMC
Regenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan Institute
  • Home
  • Our People
    • Faculty/Staff Bios
    • Core Faculty Publications
    • Administrative Resources
  • Our Technologies
  • About Us
    • Welcome
    • Video
    • Mission Statement
    • What Is Regenerative Medicine?
    • Executive Committee
    • Contact Us
    • Clinical Site
  • Our Research
    • Focus Areas
      • Tissue Engineering and Biomaterials
      • Cellular Therapies
      • Medical Devices and Artificial Organs
      • Clinical Translation
    • Matrix
    • Centers
    • Laboratories
    • Clinical Trials
    • Initiatives
  • Media
    • Current News
    • News Archive
    • Video
    • Podcasts
    • Newsletter
    • Grant of the Month
    • Publication of the Month
    • Media Contact
    • Video Links
  • Professional Development
    • Seminar Series
    • Special Events
    • Student Interest Groups
    • CATER
    • Post-Doctoral Opportunities
    • Career Opportunities
    • Wiegand Summer Internship
    • Admissions
    • Summer School
    • 2022 Scientific Retreat

Placental Cells May Prevent Viruses from Passing from Mother to Baby

    Home Cellular Therapy Placental Cells May Prevent Viruses from Passing from Mother to Baby

    Placental Cells May Prevent Viruses from Passing from Mother to Baby

    By The McGowan Institute For Regenerative Medicine | Cellular Therapy, News Archive | Comments are Closed | 1 July, 2013 | 0

    Placental Cells May Prevent Viruses from Passing from Mother to Baby

    Cells of the placenta may have a unique ability to prevent viruses from crossing from anstolz expectant mother to her growing baby and can transfer that trait to other kinds of cells, according to McGowan Institute for Regenerative Medicine faculty member Donna Stolz, PhD, associate director of the Center for Biologic Imaging and associate professor in the Department of Cell Biology and Physiology at the University of Pittsburgh, and researchers at Magee-Womens Research Institute (MWRI) and the University of Pittsburgh School of Medicine. Their findings, published in the early online version of the Proceedings of the National Academy of Sciences, shed new light on the workings of the placenta and could point to new approaches to combat viral infections during pregnancy.

    It is imperative that the fetus be protected from infections of its mother in order to develop properly, said co-senior investigator Yoel Sadovsky, MD, Elsie Hilliard Hillman Chair of Women’s Health Research, professor of obstetrics, gynecology and reproductive medicine, Pitt School of Medicine, and MWRI director. But how the placenta, long thought to be just a passive barrier between mother and child, accomplishes this feat has not been clear.

    “Our findings reveal some of the complex and elegant mechanisms human placental cells, called trophoblasts, have evolved to keep viruses from infecting cells,” Dr. Sadovsky said. “We hope that we can learn from this to devise new therapies against viral infections.”

    Led by Dr. Sadovsky and co-senior investigator Carolyn Coyne, PhD, associate professor, Department of Microbiology and Molecular Genetics at Pitt and MWRI member, the research team studied human trophoblast cells in the lab, exposing them to a panel of viruses. Unlike non-placental cells, trophoblasts were resistant to viral infection, but that trait was not a result of an inability of viruses to bind or enter the cells.

    The researchers noted that when the medium, or fluid environment, in which the trophoblasts were cultured was transferred to non-placental cells, such as those that line blood vessels, they became resistant to viral infection, too.

    The team noted that when the medium was exposed to sonication, which involves exposure to sound waves, viral resistance was no longer transferred to non-placental cells. This finding led them to take a closer look at exosomes, which are tiny spheres called nanovesicles that are secreted by trophoblasts and are sensitive to sonication. They found that fragments of genetic material called microRNAs contained within the exosomes, as well as lab-synthesized mimics of them, were able to induce autophagy, a mechanism of prolonged cellular recycling and survival. Blocking autophagy at least partially restored the cells’ vulnerability to viral infections.

    “Our results suggest this pathway could be a powerful evolutionary adaptation to protect the fetus and mother from viral invaders,” Dr. Coyne said. “We might be able to use these microRNAs to reduce the risk of viral infection in other cells outside of pregnancy, or perhaps to treat diseases where enhancing autophagy would be beneficial.”

    Read more…

    UPMC/University of Pittsburgh Schools of the Health Sciences Media Relations News Release

    Abstract (Human placental trophoblasts confer viral resistance to recipient cells.  Elizabeth Delorme-Axford, Rogier B. Donker, Jean-Francois Mouillet, Tianjiao Chu, Avraham Bayer, Yingshi Ouyang, Tianyi Wang, Donna B. Stolz, Saumendra N. Sarkar, Adrian E. Morelli, Yoel Sadovsky, and Carolyn B. Coyne.  Proceedings of the National Academy of Sciences, published online before print July 1, 2013.)

    Print Friendly, PDF & Email
    No tags.

    The McGowan Institute For Regenerative Medicine

    More posts by The McGowan Institute For Regenerative Medicine

    • site map
    • links
    • contact
    • subscribe to our newsletter
    © Copyright 2021 McGowan Institute for Regenerative Medicine
    A program of the University of Pittsburgh and the University of Pittsburgh Medical Center
    • Home
    • Our People
      • Faculty/Staff Bios
      • Core Faculty Publications
      • Administrative Resources
    • Our Technologies
    • About Us
      • Welcome
      • Video
      • Mission Statement
      • What Is Regenerative Medicine?
      • Executive Committee
      • Contact Us
      • Clinical Site
    • Our Research
      • Focus Areas
        • Tissue Engineering and Biomaterials
        • Cellular Therapies
        • Medical Devices and Artificial Organs
        • Clinical Translation
      • Matrix
      • Centers
      • Laboratories
      • Clinical Trials
      • Initiatives
    • Media
      • Current News
      • News Archive
      • Video
      • Podcasts
      • Newsletter
      • Grant of the Month
      • Publication of the Month
      • Media Contact
      • Video Links
    • Professional Development
      • Seminar Series
      • Special Events
      • Student Interest Groups
      • CATER
      • Post-Doctoral Opportunities
      • Career Opportunities
      • Wiegand Summer Internship
      • Admissions
      • Summer School
      • 2022 Scientific Retreat
    Regenerative Medicine at the McGowan Institute