• Pitt
  • Health Sciences
  • UPMC
Regenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan Institute
  • Home
  • Our People
    • Faculty/Staff Bios
    • Core Faculty Publications
    • Administrative Resources
  • Our Technologies
  • About Us
    • Welcome
    • Video
    • Statistics
    • Mission Statement
    • What Is Regenerative Medicine?
    • Executive Committee
    • Contact Us
    • Clinical Site
  • Our Research
    • Focus Areas
      • Tissue Engineering and Biomaterials
      • Cellular Therapies
      • Medical Devices and Artificial Organs
      • Clinical Translation
    • Matrix
    • Centers
    • Laboratories
    • Clinical Trials
    • Initiatives
  • Media
    • Current News
    • News Archive
    • Video
    • Podcasts
    • Newsletter
    • Grant of the Month
    • Publication of the Month
    • Media Contact
    • Video Links
  • Professional Development
    • Seminar Series
    • Special Events
    • Student Interest Groups
    • CATER
    • Post-Doctoral Opportunities
    • Career Opportunities
    • Wiegand Summer Internship
    • Admissions
    • Summer School
    • 2021 Scientific Retreat
    • Human Performance Optimization Conference

Dr. George Michalopoulos Awarded R01

    Cellular Therapy Dr. George Michalopoulos Awarded R01

    Dr. George Michalopoulos Awarded R01

    By: The McGowan Institute For Regenerative Medicine | Category: Cellular Therapy, Current News | February 18, 2021

    Michalopoulos2

    McGowan Institute for Regenerative Medicine affiliated faculty member George Michalopoulos, PhD, Professor and Chairman of the Department of Pathology at the University of Pittsburgh, received NIH funding to study the impact of inhibition of EGF receptor on non-alcoholic fatty liver disease. This proposal, which is funded for 5 years, will study an important role of EGFR signaling in the pathogenesis of NASH/NAFLD and has high translational impact. Other Pittsburgh Liver Research Center members supporting the study include Ramon Bataller, MD, PhD, and Aatur Singhi, MD, PhD.

    An abstract of the project follows:

    In the last two decades, there has been an increased appreciation of a long-term threat, that of non-alcoholic fatty liver disease (NAFLD), evolving into non-alcoholic steatohepatitis (NASH), which can further advance into cirrhosis and hepatocellular carcinoma (HCC). Treatment of NAFLD and NASH is primarily through attempts at nutritional modification, often unsuccessful due to poor compliance and socioeconomic factors. There is currently no accepted single-agent pharmacologic treatment for NAFLD. The current proposal is based on findings from our work on liver regeneration, in which we discovered a unique role for EGFR for control of steatosis in replicating hepatocytes. We have now extended these studies in mice fed a high fat diet supplemented with fructose in the drinking water (“Fast Food Diet”, FFD). We found that in mice on FFD, concurrent EGFR inhibition completely prevented and eliminated any fat deposition in hepatocytes. Furthermore, EGFR inhibition reversed severe hepatocyte steatosis established after FFD feeding for 4 months. Detail analysis of the mechanisms revealed widespread effects of EGFR inhibition on multiple transcription factors related to lipid metabolism and subsequent consequences to specific enzymes associated with lipid biosynthesis and degradation. No such findings occur when signaling from the other of the two hepatocyte-mitogenic receptor tyrosine kinases, MET (the HGF receptor), was eliminated. The purpose of this proposal is to explore translational applications of this finding. This will be done by exploring effects of EGFR inhibitors established in human pharmacology. In addition, we will conduct parallel analysis between EGFR and MET signaling inhibition on their effects of NAFLD, aiming to uncover specific pathways unique to EGFR that may reveal new pharmacologic approaches more focused than the inhibition of the entire EGFR signaling with its potentially adverse complications. In parallel studies, we will also use available human NAFLD/NASH tissue material available in the Biorepository of the Pittsburgh Liver Research Center (PLRC). This material will be used under the established rules of IRB obtained by PLRC for such studies. We will explore activation of EGFR dependent pathways and will correlate with the histology of NAFLD/NASH. A serious complication of progression of NAFLD to NASH is development of fibrosis. We have uncovered EGFR-controlled signaling molecules in steatotic hepatocytes, which have been associated with activation of hepatic stellate cells and enhanced production of collagens. These also offer opportunities for selective pharmacology for fibrosis and their relevance will be assessed in the studies proposed.

    Read more…

    Pittsburgh Liver Research Center News Release

     

     

    Print Friendly
    No tags.

    • site map
    • links
    • contact
    • subscribe to our newsletter
    © Copyright 2021 McGowan Institute for Regenerative Medicine
    A program of the University of Pittsburgh and the University of Pittsburgh Medical Center
    • Home
    • Our People
      • Faculty/Staff Bios
      • Core Faculty Publications
      • Administrative Resources
    • Our Technologies
    • About Us
      • Welcome
      • Video
      • Statistics
      • Mission Statement
      • What Is Regenerative Medicine?
      • Executive Committee
      • Contact Us
      • Clinical Site
    • Our Research
      • Focus Areas
        • Tissue Engineering and Biomaterials
        • Cellular Therapies
        • Medical Devices and Artificial Organs
        • Clinical Translation
      • Matrix
      • Centers
      • Laboratories
      • Clinical Trials
      • Initiatives
    • Media
      • Current News
      • News Archive
      • Video
      • Podcasts
      • Newsletter
      • Grant of the Month
      • Publication of the Month
      • Media Contact
      • Video Links
    • Professional Development
      • Seminar Series
      • Special Events
      • Student Interest Groups
      • CATER
      • Post-Doctoral Opportunities
      • Career Opportunities
      • Wiegand Summer Internship
      • Admissions
      • Summer School
      • 2021 Scientific Retreat
      • Human Performance Optimization Conference
    Regenerative Medicine at the McGowan Institute