An international collaborative study by researchers at Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and the Beaumont RCSI Cancer Centre (BRCC), the Mayo Clinic, and the University of Pittsburgh has revealed a potential new way to treat secondary breast cancer that has spread to the brain, using existing drugs. The study is published in Nature Communications.

The research was led by BRCC investigators Professor Leonie Young, Dr. Nicola Cosgrove, Dr. Damir Varešlija, and Professor Arnold Hill. McGowan Institute for Regenerative Medicine affiliated faculty member Steffi Oesterreich, PhD, the Shear Family Foundation Chair in Breast Cancer Research Professor and Vice-Chair Department of Pharmacology and Chemical Biology, University of Pittsburgh; Co-Leader Cancer Biology Program, UPMC Hillman Cancer Center (UPMC HCC); and Co-Director Women’s Cancer Research Center, UPMC HCC and Magee Womens Research Institute, is a co-author of the study.

Most breast cancer related deaths are a result of treatment relapse leading to spread of tumors to many organs around the body. When secondary breast cancer, also known as metastatic breast cancer, spreads to the brain it can be particularly aggressive, sometimes giving patients just months to live.

The RCSI study focused on genetically tracking the tumor evolution from diagnosis of primary breast to the metastatic spread in the brain in cancer patients. The researchers found that almost half of the tumors had changes in the way they repair their DNA, making these tumors vulnerable to an existing type of drug known as a PARP inhibitor. PARP inhibitor drugs work by preventing cancer cells to repair their DNA, which results in the cancer cells dying.

“There are inadequate treatment options for people with breast cancer that has spread to the brain and research focused on expanding treatment options is urgently needed. Our study represents an important development in getting one step closer to a potential treatment for patients with this devastating complication of breast cancer,” commented Professor Leonie Young, the study’s Principal Investigator.

“By uncovering these new vulnerabilities in DNA pathways in brain metastasis, our research opens up the possibility of novel treatment strategies for patients who previously had limited targeted therapy options,” said study author Dr. Damir Varešlija.

Read more…

Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences News Release

Science Daily

Abstract (Nicola Cosgrove, Damir Varešlija, Stephen Keelan, Ashuvinee Elangovan, Jennifer M. Atkinson, Sinéad Cocchiglia, Fiona T. Bane, Vikrant Singh, Simon Furney, Chunling Hu, Jodi M. Carter, Steven N. Hart, Siddhartha Yadav, Matthew P. Goetz, Arnold D. K. Hill, Steffi Oesterreich, Adrian V. Lee, Fergus J. Couch, Leonie S. Young. Mapping molecular subtype specific alterations in breast cancer brain metastases identifies clinically relevant vulnerabilities. Nature Communications, 2022; 13 (1).)