• Pitt
  • Health Sciences
  • UPMC
Regenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan Institute
  • Home
  • Our People
    • Faculty/Staff Bios
    • Core Faculty Publications
    • Administrative Resources
  • Our Technologies
  • About Us
    • Welcome
    • Video
    • Statistics
    • Mission Statement
    • What Is Regenerative Medicine?
    • Executive Committee
    • Contact Us
    • Clinical Site
  • Our Research
    • Focus Areas
      • Tissue Engineering and Biomaterials
      • Cellular Therapies
      • Medical Devices and Artificial Organs
      • Clinical Translation
    • Matrix
    • Centers
    • Laboratories
    • Clinical Trials
    • Initiatives
  • Media
    • Current News
    • News Archive
    • Video
    • Podcasts
    • Newsletter
    • Grant of the Month
    • Publication of the Month
    • Media Contact
    • Video Links
  • Professional Development
    • Seminar Series
    • Special Events
    • Student Interest Groups
    • CATER
    • Post-Doctoral Opportunities
    • Career Opportunities
    • Wiegand Summer Internship
    • Admissions
    • Summer School
    • 2021 Scientific Retreat
    • Human Performance Optimization Conference

Grant of the Month | February 2018

    Grant of the Month Grant of the Month | February 2018

    Grant of the Month | February 2018

    By: The McGowan Institute For Regenerative Medicine | Category: Grant of the Month, Grant of the Month 2018 | February 27, 2018

    PI: Jonathan Vande Geest

    Title: Preclinical assessment of a compliance matched biopolymer vascular graft

    Description: Heart disease was responsible for 614,348 deaths in 2014, making it the leading cause of death for both women and men in the United States [1]. Over 400,000 coronary artery bypass graft (CABG) procedures were performed in 2010 alone, with reintervention rates reported to be as high as 8.8% [2]. In addition to limited autologous tissue availability, the treatment of small diameter vascular disease is hindered by the compliance mismatch of currently delivered grafts that lead to subsequent failure via intimal hyperplasia (IH) and graft thrombosis [3-7]. Despite significant recent progress, the development of a compliance matched and biologically functional TEVG has remained elusive. The utility of biopolymer based constructs have been promising [8], however there has been limited success in modulating the compliance and mechanical properties of these materials. Our overall hypothesis is that a TEVG composed primarily of alternating layers of gelatin and tropoelastin can be compliance matched to native tissue and, when lined with an autologous blood derived endothelium, reduce the current failure modes of small diameter vascular grafts. We further hypothesize that the elution of TGFβ2 from our graft will maintain the compliance of our TEVG following implantation. Therefore, the goal of this proposal is to assess the matrix remodeling, mechanical properties, thrombosis, and IH of our endothelialized, biomimetic, and compliance matched TEVG using both an in-vitro and in-vivo approach. This goal will be met by completing the following specific aims. Specific Aim 1: Fabricate a layered TEVG that is compliance matched to a rat aorta and an ovine carotid artery using our established experimental/computational optimization approach. Specific Aim 2: Determine the compliance, load dependent ECM organization, and protease activity of our cell seeded TEVGs as TGFβ2 is released during mechanically stimulated bioreactor culture. Specific Aim 3: Determine the compliance (in-vivo), patency, thrombogenicity, IH, and ex-vivo load dependent microstructure and mechanical properties of TGFβ2 eluting and compliance matched TEVGs. Specific Aim 4: Assess the patency, thrombogenicity, IH, and ex-vivo load dependent microstructure and mechanical properties of TGFβ2 eluting and compliance matched TEVGs lined with ECs derived from autologous adult versus autologous umbilical cord blood following ovine carotid implantation. Successful completion of the proposed aims will result in a TEVG that immunocompatible, antithrombogenic, and maintains it’s compliance matched mechanical properties following implantation. The proposed research will also generate novel information regarding the extracellular matrix remodeling of biopolymer based vascular grafts as they remodeled both in-vitro and in-vivo.

    Source: NHLBI

    Term: 9/26/2017 – 8/31/2018

    Amount:  $672,682

    Print Friendly
    No tags.

    • site map
    • links
    • contact
    • subscribe to our newsletter
    © Copyright 2021 McGowan Institute for Regenerative Medicine
    A program of the University of Pittsburgh and the University of Pittsburgh Medical Center
    • Home
    • Our People
      • Faculty/Staff Bios
      • Core Faculty Publications
      • Administrative Resources
    • Our Technologies
    • About Us
      • Welcome
      • Video
      • Statistics
      • Mission Statement
      • What Is Regenerative Medicine?
      • Executive Committee
      • Contact Us
      • Clinical Site
    • Our Research
      • Focus Areas
        • Tissue Engineering and Biomaterials
        • Cellular Therapies
        • Medical Devices and Artificial Organs
        • Clinical Translation
      • Matrix
      • Centers
      • Laboratories
      • Clinical Trials
      • Initiatives
    • Media
      • Current News
      • News Archive
      • Video
      • Podcasts
      • Newsletter
      • Grant of the Month
      • Publication of the Month
      • Media Contact
      • Video Links
    • Professional Development
      • Seminar Series
      • Special Events
      • Student Interest Groups
      • CATER
      • Post-Doctoral Opportunities
      • Career Opportunities
      • Wiegand Summer Internship
      • Admissions
      • Summer School
      • 2021 Scientific Retreat
      • Human Performance Optimization Conference
    Regenerative Medicine at the McGowan Institute