• Pitt
  • Health Sciences
  • UPMC
Regenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan InstituteRegenerative Medicine at the McGowan Institute
  • Home
  • Our People
    • Faculty/Staff Bios
    • Core Faculty Publications
    • Administrative Resources
  • Our Innovations
    • Impact
    • Patent Matrix
    • Featured Innovations
      • Innovation Insights
      • Coulter Programs
      • Expert Exposés
      • Spinout Spotlight
    • Partnerships & Collaborations
      • Industry
      • Academia
      • Within Pitt
    • Contact
  • About Us
    • Welcome
    • Video
    • Statistics
    • Mission Statement
    • What Is Regenerative Medicine?
    • Contact Us
    • Clinical Site
  • Our Research
    • Focus Areas
      • Tissue Engineering and Biomaterials
      • Cellular Therapies
      • Medical Devices and Artificial Organs
      • Clinical Translation
    • Matrix
    • Centers
    • Laboratories
    • Clinical Trials
    • Initiatives
  • Media
    • Current News
    • News Archive
    • Video
    • Podcasts
    • Newsletter
    • Grant of the Month
    • Publication of the Month
    • Media Contact
    • Video Links
  • Professional Development
    • Seminar Series
    • Special Events
    • Student Interest Groups
    • CATER
    • Post-Doctoral Opportunities
    • Career Opportunities
    • Wiegand Summer Internship
    • Admissions
    • Summer School
    • 2020 Scientific Retreat
    • Human Performance Optimization Symposium

Grant of the Month | April 2017

    Grant of the Month Grant of the Month | April 2017

    Grant of the Month | April 2017

    By: The McGowan Institute For Regenerative Medicine | Category: Grant of the Month, Grant of the Month 2017 | April 26, 2017

    PI: Bryan Brown

    Title: Assessing the Impacts of Aging upon the Macropahge Response to Implantable Materials

    Description: The ultimate success or failure of implantable materials is invariably a function of the local host tissue response to the materials and the associated remodeling process at each anatomical site. The interaction of the immune system with implantable materials has historically been considered to be a negative occurrence associated with tissue degradation, implant encapsulation, and/or failure. Recently, the role of the innate immune system, particularly that of macrophages, in the response to implantable materials has received renewed attention. It has now been shown that macrophages, depending upon plastic and context-dependent polarization profiles (e.g. M1 pro-inflammatory vs. M2 anti-inflammatory), are also capable of affecting improved tissue integration and performance following implantation. This emerging understanding of the constructive, regulatory, and essential role of macrophages represents a departure from classical paradigms of host-implant interactions. Indeed, it now appears desirable that biomaterial-based approaches to tissue reconstruction should both accommodate and promote involvement of the immune system to facilitate positive outcomes. However, the ability to promote such activity is predicated upon an in-depth, context-dependent understanding of the host response to biomaterials. The proposed work seeks to define the host response to biomaterials in the context of aging. Despite the increasing usage of implantable medical devices in aged patients, the impacts of aging upon the host response have never been investigated. Immunosenescence, dysregulation of macrophage function and polarization, and delayed resolution of acute immune responses in aged individuals have all been demonstrated. This would suggest that the host response to biomaterials in aged individuals should differ significantly from that in younger individuals. However, studies examining the effects of aging upon the host response to biomaterials and the implications of this response for long-term integration and function in aging individuals have never been performed. Thus, there is a clear need to elucidate the impacts of aging upon the host response in order to develop implantable materials which address the needs of an increasingly aged population. The overarching goals of the proposed work are to define the effects of aging upon the host response to implantable materials, to explore the mechanisms by which aging alters the host response, and to develop methods that manipulate the host response to improve remodeling outcomes in aged individuals.

    Source: National Institute on Aging

    Term: 5 years

    Amount: $312,694/year

    Print Friendly
    No tags.

    • site map
    • links
    • contact
    • subscribe to our newsletter
    © Copyright 2019 McGowan Institute for Regenerative Medicine
    A program of the University of Pittsburgh and the University of Pittsburgh Medical Center
    • Home
    • Our People
      • Faculty/Staff Bios
      • Core Faculty Publications
      • Administrative Resources
    • Our Innovations
      • Impact
      • Patent Matrix
      • Featured Innovations
        • Innovation Insights
        • Coulter Programs
        • Expert Exposés
        • Spinout Spotlight
      • Partnerships & Collaborations
        • Industry
        • Academia
        • Within Pitt
      • Contact
    • About Us
      • Welcome
      • Video
      • Statistics
      • Mission Statement
      • What Is Regenerative Medicine?
      • Contact Us
      • Clinical Site
    • Our Research
      • Focus Areas
        • Tissue Engineering and Biomaterials
        • Cellular Therapies
        • Medical Devices and Artificial Organs
        • Clinical Translation
      • Matrix
      • Centers
      • Laboratories
      • Clinical Trials
      • Initiatives
    • Media
      • Current News
      • News Archive
      • Video
      • Podcasts
      • Newsletter
      • Grant of the Month
      • Publication of the Month
      • Media Contact
      • Video Links
    • Professional Development
      • Seminar Series
      • Special Events
      • Student Interest Groups
      • CATER
      • Post-Doctoral Opportunities
      • Career Opportunities
      • Wiegand Summer Internship
      • Admissions
      • Summer School
      • 2020 Scientific Retreat
      • Human Performance Optimization Symposium
    Regenerative Medicine at the McGowan Institute