Here is a quick look into the regenerator’s toolkit developed by the McGowan Institute for Regenerative Medicine:

Tissue Engineering and Biomaterials

Made of cells and synthetics, tailor-made materials from the lab can replace injured or diseased tissues.

Tissue engineering is a strategy where biologically compatible scaffolds are implanted in the body at the site where new tissue is to be formed. If the scaffold is in the geometric shape of the tissue that needs to be generated, and the scaffold attracts cells the outcome is new tissue in the shape desired. If the newly forming tissue is subjected to exercise as it forms, the outcome can be new functional engineered issue.

Millions of patients have been treated with some form of tissue engineered devices, yet the field is in its infancy. The primary success stories have been with soft tissue regeneration. To learn more about some of the promising studies and clinical trials involving tissue engineering, click here.

Cellular Therapies

We can coax cells to grow into just the right kind of tissue to heal an injury or cure a disease.

Many millions of adult stem cells are found in every human. Our body uses stem cells as one way of repairing itself. Studies have illustrated that if adult stem cells are harvested and then injected at the site of diseased or damaged tissue, reconstruction of the tissue is feasible under the right circumstances. These cells can be collected from blood, fat, bone marrow, dental pulp, skeletal muscle and other sources. Cord blood provides yet another source of adult stem cells. Scientists and clinicians are developing and refining their ability to prepare harvested stem cells to be injected into patients to repair diseased or damaged tissue.To learn more about some of the promising studies and clinical trials involving cellular therapies, click here.

Medical Devices and Artificial Organs

Artificial organs can sustain patients during their long wait for donor organs and sometimes eliminate the need for transplantation altogether.

In cases where an organ fails, the predominant clinical strategy is to transplant a replacement organ from a donor. The principal challenges are the availability of donor organs, and the requirement that the donor take immunosuppression drugs—which have side effects. Further, there are many instances where the time to find a suitable donor organ requires an interim strategy to support or supplement the function of the failing organ until a transplantable organ is found. Using circulatory support as an example, there are technologies in various stages of maturity, initially using ventricular assist devices (VADs) as a bridge to a heart transplant, and now there are VADs that are used for long-term circulatory support (destination therapy).

 Scientists and clinicians around the world are developing and evaluation devices to supplement or to replace the function of many organ systems including the heart, lung, liver and kidney.

To learn more about some of the promising studies and clinical trials involving medical devices and artificial organs, click here.