SPARK-PL: Attributes and User
Interface

Alexey Solovyev

Abstract

Classes, methods, and fields can have special attributes. Main SPARK-PL attributes are
introduced.

Table of Contents

S N o I 11 1 V1 1
00 O I 11 o [0 Tox 1 o 1
A (3 = A=] o1 2
1.3, @parameter @triDULEiii e e 2
1.4, @UABSEL PArAMELES ...iveiiiii et et e e et e 2
1.5, @EXTErNAl @IDULEoviniieie i 3
T (2 1= o =] o1 = 3
A (o0 (ot = 11 o[1 (= 6
1.8. @ODSEIVEr GTIDULEeeeeeee e e eaes 6

1. SPARK-PL Attributes

1.1. Introduction

Attributesin SPARK-PL are special declarationsthat can be applied to global variables, methods, or types
(agents and models). Each attribute specifies arole of aglobal variable (method, etc.) in the SPARK user
interface or the role in SPARK itself. For instance, in the SPARK interface some model variables can be
parameters, other variables can be plotted as charts.

All attributes have the following syntax

@ttribute-name(paraneterl = valuel, paraneter2 = value2, ...)
gl obal sone-vari abl e

to sone- et hod

agent somne- agent

nodel sone- nodel

Each attribute is declared immediately before a global variable declaration. Each attribute has name and
several parameters. Parameters can have different values: strings or numbers. All parameter values should
be constants, it is not possible to use variables in the parameter declaration.Often parameters have default
values. Parameters with default values can be omitted in the attribute declaration. It is possible to declare
several attributes for the same global variable.

@ttributel(par = val ue)
@ttribute2(parl = valuel, par2 = val ue2)
gl obal sone-vari abl e

SPARK-PL: Attributes
and User Interface

1.2. @chart attribute

This attribute tells that the value of aglobal variable should be plotted. Parameter 'name’ with string value
specifiesthe name of achart window in the user interface. The default value equalsto the name of aglobal
variable. Parameter 'label’ specifies the label of the variable in the plot (the default value is variable's
name). Several variables are plotted in the same chart if they have the same 'name’ parameter. Parameter
'interval' specifies how often the value of avariable will be read for plotting. The default valueis 1.

; Plot variable 'data' each 2 sinulation steps
@hart(name = "Data", interval = 2)
gl obal data : nunber

; Plot variable 'data2' each sinulation step.
; Chart's nane will be "data2".

@hart ()
gl obal data2 : nunber

This attribute can be applied only to numerical variables.

1.3. @parameter attribute

This attribute tells that a global variable is a parameter in a SPARK model. It means that its value can
be changed during a model simulation process manually by a user. Parameter 'name’ gives the name of a
parameter inthe user interface. Thedefault valueisvariable'sname. Parameter 'min’ specifiesthe minimum
value of aparameter (default 0). Parameter 'max’ specifies the maximum value of a parameter (default 10).
Parameter 'step’ specifies the adjustment step for a parameter (default 0.1). Parameter 'default’ specifies
theinitial value of a parameter.

@ar aret er (nane = "Data", default = 50, mn = 0, max = 100, step = 2)
gl obal data : numnber

This attribute can also be applied to boolean variables.

@par aneter (name = "Flag", default = true)
gl obal nodel -flag : bool ean

Do not initialize global variables which has the parameter attribute. Use 'default’ parameter instead.
Consider an example

@par aneter(name = "Data", mn = 0, max = 100, step = 2)
gl obal data = 50 : nunber
Inthisexample, the variable 'data will be awaysinitialized with the value 50 every time the 'setup' method

of amodel is called. Very often it is not a desired behavior especially when some parameters control the
initialization process.

1.4. @dataset parameter

If you want to collect values of some variable during a simulation process, then use '@dataset’ attribute.
Every global variable with that attribute will be added to the model data set, and this data set can be saved

SPARK-PL: Attributes
and User Interface

at any time during a simulation process. There is only one parameter for '@dataset’ attribute: name of a
variablein the data set. As always, the default value is variabl€'s name itself.

; Parent heses can be omtted
@hart

@lat aset (namre = "Data")

gl obal data : number

Even paraneters can be added to the data set.

In that case all changes of the parameter will be saved.
@par amet er
@lat aset
gl obal paraneter : numnber

1.5. @external attribute

Thisattributeis applied to methods declared in amodel type. Methods with this attribute will be available
inthe user interface. That is, if there are methods with the '@externa’ attribute in amodel, then in the user
interface a window 'Methods' will appear. This window will contain buttons with names of all methods
declared with the '@external’ attribute. A user can click on these buttons to call methods manually at any
time during (or before) a simulation. Only methods without parameters can have this attribute. There is
only one parameter 'name’ with the default value equals to the method's name.

Only met hods inside a nodel type can be decl ared
with the @xternal attribute
nodel Model

@xternal (name = "Do Sonet hi ng")
to do-sonet hi ng

do sonmet hi ng
end

1.6. @step attribute

The attribute '@step' can be applied to declarations of agent types. It specifies the order in which agents
make their steps. It has two parameters: 'priority' and 'time'. Both parameters are optional. The default
value of 'priority' is 1000, the default value of timeis"1". Note that the priority is a number, and the time
isastring.

To understand the '@step' attribute, it is required to understand how agents make their steps in SPARK.
Any agent has atype. Agents of the same type always maketheir stepsin the same order they were created.
That is, if you have two agents of the same type, then one which was created first is moving first each
simulation step. The only question is how agents of distinct types are scheduled to make steps during each
simulation step (or during each tick because one simulation step equals to one tick).

Each agent type hasaspecial numerical value: priority. Thisnumber can range from 1to 1000. The priority
specifies in which order agents of distinct types perform their actions. If the priority of one type is less
(as a number) than the priority of another type, then agents of the former type will move before agents
of the later type. If two types have the same priority then the names of types will be compared and the
first type in the alphabetical order will get the right of the first move (agents of that type will move first).
As mentioned above, by default the priority is 1000 for all agent types. It means, that if priorities are not

SPARK-PL: Attributes
and User Interface

specified explicitly (using the' @step' attribute), then agents maketheir turnsaccording to thelexicographic
ordering of their type names. Consider several examples.

@tep(priority = 1)
agent Virus : SpaceAgent

@tep(priority = 2)
agent Macrophage : SpaceAgent

In this example, agents of type 'Virus will act before agents of type 'Macrophage' because priorities are
specified explicitly and 1 < 2.

@tep(priority = 1)
agent Virus : SpaceAgent

@tep(priority = 1)
agent ©Macrophage : SpaceAgent

In this example, agents of type 'Macrophage' will act first because they have the same priority as viruses
but in the alphabetical ordering 'Macrophage' goesfirst.

@tep(priority = 10)
agent Virus : SpaceAgent

agent ©Macrophage : SpaceAgent

In this example, agents of type 'Virus will act first because the priority is not specified for macrophages,
so they get the lowest priority (1000) by default.

Consider one more example which shows that the order in which agents make their steps can be very
important.

nodel Test Model
space GidSpace -10 10 -10 10 fal se fal se

to setup

Create several agents of type 'Agentl
ask create Agentl 10
[

set -randonmt posi tion

Create agents of type 'Agent2' at the same positions as
agents of type 'Agentl

hat ch- one Agent 2

]

end

Agent 1
agent Agentl : SpaceAgent

SPARK-PL: Attributes
and User Interface

to step

; Kill all agents of type 'Agent2' at my position
kill agents-here Agent?2

end

; Agent 2
agent Agent2 : SpaceAgent

to step

; Kill all agents of type 'Agentl' at my position
kill agents-here Agentl

end

Who will survive in the example above? Agents of type 'Agentl’ will survive because they have the right
of the first move since 'Agentl’ < 'Agent2' in the lexicographic ordering. But the order of steps of agents
can be easily atered using the '@step' attribute. If we had something like

@tep(priority = 2)
agent Agentl : SpaceAgent

@tep(priority = 1)
agent Agent2 : SpaceAgent

then agents of type 'Agent2’' would survive.

Now, let's look at the second parameter of the '@step' attribute which is called 'time'. It was mentioned
before, that agents make their steps each tick. In genera, it isnot true. In fact, agents can skip someticksor
even make severa steps during one tick. Ticks measure the number of simulation steps. Each simulation
step has atime value which isrequired to finish astep. Thistime value is measured in abstract time units.
By default, each step requires exactly one time unit. This value can be altered with the ‘@tick’ attribute
(see below). All agent types also have time values associated with them. This time value measures the
amount of time which should pass between two consecutive steps of any agent of agiven type. By default,
this time is one unit. Since the default tick time is also one, it follows that by default each agent moves
exactly once each tick (the amount of time passed between ticksis 1, and each agent waits for 1 time unit
before next step).

The'time' parameter of the'@step' attributes specifies how long agents of agiven type wait before making
next steps. This parameter is not an integer number, it is a rational humber. Fractional values can be
assigned. For instance, the following time values are possible: "1", "1/2", "1/3", "4/3", "5", etc. Note that
all values should be quoted. If the tick timeis"1" and for some agent type the time value is "1/3", then
agents of that type will move three times during each simulation step. If thetime valueis"3/2" for another
type, then agents of that type will move during second, third, fifth, sixth ticks, etc.

Ticksin SPARK are discrete but time is continuous. Ticks partition the time line into discrete intervals of
the same length. Agents always make their steps at specific time points. An agent with time value "1/2"
will move at time points "1/2", "1", "3/2", "2", etc. The first two time points are in the first tick interval,
the next two points ("3/2" and "2") are in the second tick interval, etc. Consider the following example.
Assume that we have two agents of distinct typeswith timevalues"1/2" and "1/3". Thefirst agent will act
at timepoints"1/2","1","3/2","2", etc. The second agent will move at time points"1/3","2/3","1", "4/3",
"5/3","2", etc. Thepriorities of agentswill be compared only when they move at the sametime point, i.e. at
thepoints"1","2", etc. For all other time pointsonly one agent is moving, so thereare no priority conflicts.

SPARK-PL: Attributes
and User Interface

Oftenitissimpler to control the action time of agentsexplicitly using the current tick valuewhich is passed
to the 'step’ method of each agent.

1.7. @tick attribute

This attributes specifies the amount of time for each simulation step (tick). The only parameter is 'time'.
This attribute should be applied to a model declaration.

@ick(time = "1/2")
nodel Test Model

space StandardSpace -5 10 -2 2 true false

to setup

creat e-one Sl owAgent
creat e-one Fast Agent
end

; Slow agents will nove one tine each 4 ticks
@Gtep(tinme = "2")
agent Sl owAgent : SpaceAgent

to create
color = red
nove-to [-5,1, 0]

end

to step

; Make one step to the right

nove [1,0, 0]

end

; Fast agents will nove two tines each tick

@Gtep(tine = "1/4")
agent Fast Agent : SpaceAgent

to create

color = green
nove-to [-5, -1, 0]
end

to step

; Make one step to the right
nove [1, 0, O]

end

1.8. @observer attribute

This attribute is applied to a model declaration. It has two parameters. 'observer' and 'mode. The
'observer' parameter specifies the name of an observer implementation which will be used for a model.
There are several available implementations of observers in SPARK. Right now, there is one fully

SPARK-PL: Attributes
and User Interface

supported observer implementation (called "Observerl") and two experimental observers ("Observer2"
and "ObserverParallel").

The parameter 'mode’ specifies the execution mode for a model. There are two execution modes for the
default observer ("Observerl"): "serial" and "concurrent”. "ObserverParallel" has an additional mode:
"parallel" which is similar to the "concurrent” mode and will not be discussed here (a parallelized version
of SPARK isunder development).

The default execution mode is the "serial" mode. It is a usual execution mode when al actions of agents
have an immediate effect. It means, that, for example, anewly created agent will be immediately added to
the list of existing agents and will be visible for al other agents as soon as it was created.

In the "concurrent” mode severa actions are not performed immediately, but they are postponed until all
agents finish their steps. Actions that are postponed are the following: creation of new agents (‘create,
‘create-on€, 'hatch’, 'hatch-one, etc.), deletion of existing agents ('di€, 'kill"), changing values of datalayers
(‘add-value, 'add-value-here, 'set-value, 'set-value-here', etc.), moving agents in a space (‘'move’, ‘move-
to', etc.). Themain feature of the "concurrent” modeisthat all agents during asimulation step see the same
environment (surrounding agents, values of data layers) regardless of the order of their steps. There are
several restrictionsfor using the " concurrent” mode. The basic rule isthat agents should not modify values
of fields and call methods of other agents directly. Instead, agents need to use data layers and spaces for
interacting with each other.

Consider an example.

@bserver (node = "concurrent")
nodel Concurrent Model

space GidSpace -10 10 -10 10 fal se fal se
gl obal data : grid

to setup
ask create Agentl 10
[
set -randonm position
; Create agents of type 'Agent2' at the sane positions
; as agents of type 'Agentl'
hat ch- one Agent 2

]

dat a. set-value 1
end

; Agent 1l
@tep(priority = 1)
agent Agentl : SpaceAgent

to create
color = red
radius = 0.2
end

to step
; Decrease the data value by 1

SPARK-PL: Attributes
and User Interface

dat a. add- val ue-here -1
end

; Agent 2
@tep(priority = 2)
agent Agent2 : SpaceAgent

to create

color = yell ow
radius = 0.5
end

to step [tick]
; If the data value is less than 1, then die
i f data.value-here < 1
[
die
exit

]

; Increase the data value by 1
dat a. add- val ue-here 1
end

Run this example, and you see that agents of both types will survive. If you change the execution mode
to the "serial" mode, then agents of type 'Agent2' will die because agents of type 'Agentl' move first and
they decrease the value of the datato 0. In the "serial" mode agents of type 'Agent2' see this value 0 and
die. In the "concurrent" mode the value of the data which agents of type 'Agent2' seeis still '1' (not '0") so
they survive and increase the value of the databy 1. After agents of both types finish their steps, the value
of the datawill be modified (-1 + 1 = 0, so values are not changed at all).

