SPARK-PL: Data Layers

Alexey Solovyev

Abstract

In thistutorial the concept of datalayersis explained.

Table of Contents

1. Data layers in SPARK ... 1
2. Data layers in SPARK-PL ... 1
3. Working With grid VAIUESoouuiiiiiii e 2
4. Global grid MENOOSieeiii e e e e e e e 3

1. Data layers in SPARK

A datalayer isone of key components of SPARK. Roughly speaking, it defines afunction on a space, that
is, it assigns a numerical value to each point in a space.

2. Data layers in SPARK-PL

There is one type for working with data layers in SPARK-PL called 'grid'. Generally, all datalayersin a
model should be available for all agents, so it is convenient to have a global variable for each data layer.
In this case, the declaration of anew datalayer isvery simple

gl obal data-layer : grid

Globally defined data layer (grid) variables are treated in a special way in SPARK-PL: if there is no
initialization then adefault initialization will be created. Thisdefault initialization createsagrid in aspace
and its dimension equals to the integer dimension of the space.

Another way to create agrid isto use 'create-grid' command. This command has three arguments: name
of anew grid (this name can be used to get areference to a grid from any part of a model, for example
in the case when there is no global reference to a grid), x dimension of agrid, y dimension of agrid. As
alwaysin SPARK-PL, x and y could be non-integer in which case they will be rounded toward zero.

Note: in the current implementation only grids declared as global variables can be visualized during model
simulation process; if you are using 'create-grid' command to initialize a globally defined grid then the
name argument should be the same as global variable's name.

Remember that whenever you define a global variable of type 'grid' and do not provide an initialization
for it, then a default initialization will be always created. For example, in the code below two grids will
be created

nodel Model

space StandardSpace -10 10 -10 10 true true

SPARK-PL: Data Layers

; A default initialization is created for this
; grid which is equivalent to the comuand

; Create-grid "data-layer" 20 20

gl obal data-layer : grid

to setup
dat a-1 ayer = create-grid "data"” 10 10

; Now t he gl obal variable 'data-layer' contains
; a reference to a 10 by 10 grid called "data".

; If the nane "data-layer” were used in the previous |ine,
; then an error would occur during runtine
; because all data | ayers should have uni que nanes
; and there is already one grid called "data-Iayer”
end

In this example two grids will be created in the model. One of them called "data" is available through a
global variable 'data-layer'. Another grid called "data-layer" can be accessed using a command

get-grid "data-Ilayer"

This command returns a reference to a grid with the given name. Note that only one of these two grids
can be visualized during runtime: "data-layer" grid because it has the same name as aglobal variable (this
issue will be resolved in further SPARK-PL releases).

It is convenient to use ‘create-grid' as an initialization command

gl obal data = create-grid "data" 11 2

3. Working with grid values

A method 'set-value' sets the same value in al grid entries. It has one argument: a value to be set. There
are several methods for working with local grid values. A method 'value-at' returns a value from a grid
entry corresponding to a specific point in aspace. To set value at aspecific point, use 'set-value-at' method.
There is aso a method 'add-value-at' which adds a given value to the value at a specific point.

; all grid entries will be 1
dat a. set-value 1

; get a value at a point [2, 3, O]

; (the third conmponent of a vector is ignored here)
var value = data.value-at [2, 3, 0]

var new val ue = value * val ue

; set a newvalue at a point [2.4, 1, 0]
dat a. set-value-at [2.4, 1, 0] newval ue

; add a nunber to a value at a point [2, 3, O]
dat a. add-val ue-at [2, 3, 0] val ue

SPARK-PL: Data Layers

Of coursg, all these methods are accurate up to the resolution of agrid. So the following commands often
do the same things

dat a. set-value-at [1.02, 2.5, 0] 0.1
dat a. set-value-at [1.01, 2.53, 0] 0.1

Agents can work with data layers in a more convenient way. For agents it is often required to know a
value or to set a value at the same position at which they are located. Of coursg, it is always possible to
do so using 'value-at', 'set-value-at' methods with agent's position but there is a shorter way to do this.
There are methods 'value-here, 'set-value-here', 'add-value-here' which automatically use agent's position
for working with data values. Of course, only space agents can use these methods.

agent SoneAgent : SpaceAgent

to step
var dat a-here = data.val ue-here
var newdata = data-here * 4 + 5

dat a. set - val ue- here new dat a

dat a. add- val ue-here 0.5
end

Instead of 'value-here' and 'set-value-here' methods, it is more convenient to use the field 'value' of agrid.
Y ou can work with this field as with a usual variable. The following example does the same thing as the
previous one.

to step
data.value = data.value * 4 + 5.5
end

4. Global grid methods

By global methods | understand methods which affect a whole grid. One global method was aready
introduces: 'set-value' method.

The method 'total-value' returns a sum of al values in a grid. There is a command counterpart of this
method called 'sum' which takes one argument: a grid.

var total-data = data.total-val ue
var total-data2 = sum data

if total-data == total -data2

[

print "I'm not surprised"

]

There is a variation of the 'total-value method called ‘total-value-in-region’. This method has four
arguments which specify aregion in which a data should be summed up.

SPARK-PL: Data Layers

var value-in-rectangle =
data.total -value-in-region x-mn Xx-max y-mn y-mx

Methods 'max’ and 'min' return maximum and minimum values stored in agrid respectively.

dat a. max
data. mn

var max-val ue
var m n-val ue

Method 'multiply' multipliesall grid values by agiven number. This method has an alias 'evaporate’ which
reflects one common application of this method. Also there is acommand 'evaporate’ with one argument
(agrid) which does the same thing, and there is an operator *=" with a grid on the left and a number on
the right which is equivalent to the 'multiply' method.

data. multiply 2
dat a. evaporate 0.6
evaporate data 0.3
data *= 0.99

Method 'diffuse’ performs a diffusion operation on a grid. It has one argument: a diffusion coefficient.
There is acommand 'diffuse’ with two argument which does the same thing.

data.di ffuse 0.5
di ffuse data 1

This method works as follows. Each data layer cell gives equal shares of (coefficient * 100) percents of
its value to its eight neighbors. This diffusion coefficient should be between 0 and 1 for a well-defined
behavior.

