SPARK-PL: Introduction

Alexey Solovyev

Abstract

All basic e ements of SPARK-PL are introduced.

Table of Contents

1. Introduction 10 SPARK-PLouiiiiiii e e 1
2. Alphabet Of SPARK-PL ..ot e a 3
3. TYPES AN VaABHIES ..o 3
4, SPARK-PL baSiC COMMEANGScuuiiiniiiiitiii ettt ee e e e e e e et e et e e e e e e e e eaaeeaees 6
B, SPARK-PL DBSIC tY DS et iiii et e 8
L3N N o 112 oL PP 8
B2, BOOIEAN ..o 8
ST {11 0o P 9
LB = o (o 9
R N = V£ TE= 1o [1T £ 10

1. Introduction to SPARK-PL

SPARK-PL (SPARK Programming Language) is a special language for implementing SPARK models.
Its syntax is derived primary from Logo programming language (influenced by NetLogo) and Java
programming language. All models written in SPARK-PL are trandated into Java source code first, and
then aJavacompiler is used to produce the machine code which can be executed by the SPARK simulation
engine. SPARK-PL has static type system which helpsto eliminate many programmers’ errors concerning
an incorrect use of variables of incompatible types. Type inference mechanism of SPARK-PL makes it
easy toimplement model sintheway similar to languageswith adynamic type system. With typeinference,
it is not required to provide an explicit type for every new variable. The trandator is capable to find the
correct type in many cases automatically by looking at the expressions where variables are used.

Every SPARK model written in SPARK-PL consists of several SPARK-PL source code files. Thesefiles
constitute a SPARK-PL project. SPARK-PL projectsare managed by aspecial program called the SPARK -
PL Project Manager.

SPARK-PL: Introduction

Figure 1. The SPARK-PL Project Manager

EBX

File Options
BasicAgent.java :
InfectAgent.java : Add
InflamCell.java :
Model.java
Remove
Translate
Compile
Project name: ToyinfectionModel Runin SPARK
Project directory: plesiToylnfectionModel
) Start
Output directory: output

Thelist ontheleft showsall filesin aproject. New files can be added by clicking'Add' button which brings
in an open file dialog. Button '..." allows to choose another model directory. Projects can be saved via
'File' menu 'Save project...' command. The button ‘Trandlate' is used for trandation a SPARK-PL source
codeinto a Java source code which then can be compiled by clicking the ‘Compil€e button. 'Runin SPARK
button' runs the compiled model in SPARK. 'Start' button is ashortcut for all three main actions: trand ate,
compile, and then runin SPARK.

Step by step instruction on creating new SPARK-PL projects. First, create SPARK-PL source codefilesin
any plaintext editor. Savetheminafolder whichwill beamain project folder. Click "..." buttonin the project
manager and select the project folder. Add source code filesinto the manager using '‘Add' button. Save the
project description file by selecting 'Save project...' item from the 'File' menu. The project descriptionfileis
asimplexml file which contains the information about all filesinside the project. Note that thisfile should
be in the same project folder as source code files. Click 'Trandate' button. If any error occurs, correct
it and click 'Trandate' again. After elimination of all trandation errors and after successful trandation,
click 'Compil€e button. Again, there could be some compilation errors which also can be corrected. After
a successful compilation process, click ‘Run in SPARK' button to run a model in SPARK. It is aways
possible to use only 'Start' button instead of three other buttons. But for the first time, it is better to use
"Trandate', 'Compil€e, 'Run in SPARK' sequence in order to simplify the error correction process.

To open an existing project description file, select 'Open project..." item from the 'File menu. Also, 10
most recently open projects are available directly in the 'File menu. If you later add some new filesto an
existing project, do not forget to save the description file again using 'Save project...' command.

SPARK-PL: Introduction

2. Alphabet of SPARK-PL

VaI|d symbols in SPARK-PL source code files are all Latin letters, digits, period ., colon "', comma
., square brackets '[' and "', parentheses ‘(" and ")', and symbols' ', "~', '+, -, "' [, '=', %, ‘<, >,
Semicolon ;' denotes a comment: everything after a semicolon is not parsed by a SPARK-PL translator
and treated as a comment.

Type names, variable names, command names areidentifiers. |dentifiers start from aletter and can include
any letters, digits, and dashes'-'. All identifiers are case sensitive.

;A comment

; A variable naned 'sone-variable' is declared and
; initialized
var sone-variable = 20.2

: This is a different variable
var Sone-variable = 10.123e-10

; This is the third variable
var SoneVariable = "string"

SPARK-PL has many similaritieswith languages from the Logo family. That'swhy identifiers can include
the dash symbol. Because of that, an attention should be paid to distinguish dash and minus. Theruleis
simple: minus should be always separated by spaces.

3. Types and variables

All SPARK-PL source files should begin with one of the following declarations

cl ass class-nane : parent-type
agent agent-nane : parent-type
nodel nodel -nane : parent-type

In fact, everything in SPARK-PL is encapsulated inside classes (or types). 'agent' and 'model’ are special
typeswhichwill bedescribed later. All typeshasaname and aparent type from whichthey inherit functions
and properties. Usual classes and models are not required to have a parent type. For agents a parent type
isrequired (see the agent tutorial for details). After anew type declaration on thefirst line of asourcefile,
atype definition follows. Everything written after a type declaration is considered to be included inside
that type. But it is also possible to include several type declarations in one source file. To do so, just start
anew type declaration in any place of a source file. Then everything before that new declaration belongs
to the previously declared type, and everything after will belong to a new type.

class O assil
definition of C assl
Decl are a new type which has the previous

type as its parent type
cI ass Class2 : dassl

SPARK-PL: Introduction

; definition of C ass2

; One nore type
class O ass3

; definition of C ass3
Note that each SPARK model must contain one and only one model class.

Several types(classes) can be definedin onefile, but it isalso possibleto split adeclaration of oneclassinto
several files. It can be achieved by adding the 'partial’ keyword before declaring the corresponding type:

; Inside filel
partial class Cassl

; definition of d assl
partial class Cass2 : dassl
; definition of C ass2

; Inside file2
partial class O assl

; The parent type should be the sane for all partial declarations
partial class Cass2 : dassl

Models, agents, and classes can be declared with the 'partial’ keyword. It is always recommended to
completely declare one type in one file unless there is a definite benefit of using partial declarations. One
possible usage of partial declarationsisto split the main model into two files: one file contains all model
functions, ancther file contains all global variables and parameters. In this way it is simpler to add new
parameters and to manage global variables.

SPARK-PL consists of commands, control structures and declarations. There are many globally defined
commands, for example 'ask’, ‘create, 'random’, 'random-vector', etc. Commands defined inside classes
are called methods. Variables defined inside classes are called fields. Declaration of avariable looks like
the following

var X : nunber

Here'var' isakeyword, 'number’ isatype. A type name can be omitted. In that case avariableistreated as
avariable of unknown type. Itispossible that the type will be determined automatically later. For example,
if we have acode

Then after the assignment the type of x becomes 'number'. On the other hand, there are many situations
when the type cannot be determined automatically (especially in the current implementation of the type
inferring algorithm). Because of this, it isrecommended to explicitly specify typesof all fields and method
arguments. It is possible to initialize a variable during its declaration

SPARK-PL: Introduction

There is another keyword 'global’ for declaring global variables. These variables are available not only in
the type where they are declared but also in other types. And you only need to know their name to access
them in any part of a code. Global variables can be declared inside any class or agent, but it is a good
practice to declare global variables only inside model types.

nodel Model

; X wWill be available in any part of a code
gl obal x = 30

Methods are declared as follows

to nethod-name [argl:type arg2:type] : method-type
; Method' s body
end

If there are no arguments in a method then you may omit square brackets for arguments. All explicit type
declarations are unnecessary. A return type of a method, 'method-type’, can also be omitted. In that case
a method will have no return type. If a method has a return type then its last command should be 'return
some-value' where 'some-value' has the same type as method's type.

to add-nunbers [a b] : nunber
[

var result = a + b

return result

]

There is one very important rule associated with SPARK-PL commands and methods. If a command
returns somevaluethenit isrequired to use parenthesesfor all its argumentswhich have complex structure
(not asingleidentifier or aconstant). For commands without return valueit is not required. It seemsto be
confusing and not useful but it helps to reduce the number of parenthesesin a program. In any case, it is
always better to enter additional parenthesesin order to avoid unexpected compile errors.

agent SonmeAgent : SpaceAgent

to sone- et hod

var v : vector

; The next conmand is transl ated as

; var x = (random 100) + 20

; because 'randomi returns a value so all its argunents
; must be inside parentheses of have a sinple structure
var x = random 100 + 20

V.X = X
X = random (100 + x)
V.y =y

; The next command is transl ated as

; move-to (v + (X * v))

; because 'nobve-to' does not return any val ue.
move-to v + X * v

end

SPARK-PL: Introduction

Every SPARK model should have the main model class. Thisclassisdeclared using 'model’ keyword. The
minimal working SPARK model written in SPARK-PL may look as follows

nodel Model

space StandardSpace -10 10 -10 10 true true

Right now you may ignore the second line where the model spaceisdeclared. Y ou will learn about spaces
later. Now you only need to know that it is a requirement to declare a space.

Thisminimal model is not useful. To make it more interesting, several methods should be added. Thefirst
method to add is the 'setup' method. This method is called every time when amodel is initialized. Note
that if you have an explicit initialization for aglobal variable then thisinitialization will be processed each
time the 'setup' method is called. There are other two special methods: 'begin-step' and 'end-step' inside
the main model class. The method 'begin-step' is called before each simulation step, the method 'end-step’
is called after each simulation step. The precise declarations of these methods are the following

nodel Model
space StandardSpace -10 10 -10 10 true true

to setup
; Initialize a nodel
end

to begin-step [tick] : bool ean
end

to end-step [tick] : bool ean
end

The return type 'boolean’ is not required for 'end-step’ and 'begin-step’ methods. It will be added
automatically. Moreover, you don't need to write areturn command. By default, these methods return false
value. If any of these methods returns true value, then asimulation will be stopped. So these methods can
control a simulation process and stop it if necessary.

to begin-step [tick]
; Automatically stops a sinulation after 1000 steps
if tick >= 1000
[return true]
end

Also, it is possible to omit 'tick' argument for these two methods. This argument counts the humber of
steps passed from the beginning of a simulation process. If you don't supply this argument, then it will
be automatically created.

4. SPARK-PL basic commands

The most important command which controls a program flow is'if". It has two arguments: aboolean value
and aspecia argument representing ablock of acode. Thisblock of codeis executed only if the argument
istrue. An example clarifies everything.

SPARK-PL: Introduction

if a>2

[

do- sonet hi ng

]

There is a modification of this command ‘ifelse’ which has an additional code block argument which is
executed when the condition (the first argument) is false.

ifelse a > 2

[

do- sonet hi ng

]
[

do- sonet hi ng- el se

]

The command 'repeat’ repeats a block of commands several times.

var n = 100

; Do something 100 tines
repeat n

[

do- sonet hi ng

]

The command 'whil€' repeatedly executes a given block of commands meanwhile a condition is true.

var n = 100

whilen>0

[

do- sonet hi ng
n=n-1

]

There is a very special command (a keyword) ‘for' which is used for iterating some value. It has the
following syntax

for var-name = first-value : step : |ast-value
do- sonet hi ng
; var-nane is avail able here as a nunerical variable

]

Here 'var-name' is any identifier. The only condition isthat thereis no local variable with the same name.
first-value, 'step’, and 'last-value' are numbers (or numerical expressions). ‘first-value' specifiestheinitial
value of the variable 'var-name'. 'step' specifies an increment of that variable. 'last-value' specify when to
stop theiterations. Iterationswill stop when the value of 'var-name' becomes greater than 'last-value'. 'step'
isan optional argument and can be omitted.

SPARK-PL: Introduction

; Prints out nunbers from1l to 100
for i =1 : 100

print i
]

If auser method in SPARK-PL has return type then the command ‘return value' can be used to exit from
thismethod at any point. For methods without return type this command is not available because it lways
requires an argument. In that case, the command 'exit' can be used.

There are two commands which control the iterative processes 'whil€, 'repeat’, and 'for'. The command
‘continue’ inside an iteration code block tells to stop the current iteration immediately and start the next
iteration. The command 'break’ stopsall iterationsimmediately and the commands after an iteration process

are executed.
5. SPARK-PL basic types
5.1. number

The most basic type is 'number' (or ‘doubl€). This type represents a numerical value. It corresponds to a
double type in many other programming languages. So it can be used for representing both integers and
floating point numbers.

By default, all numerical variables are initialized with 0. All usual arithmetical operations are available
for numbers: +, - (binary and unary), *, /. The operator '%' finds a residual of a division. The operator "'
raisesitsleft hand side to the power from the right hand size. There are several operators which combines

the assignment with an arithmetic operation: +=, -=, *=, /=. These operators are explained in the following
example.

var x = 20

var y = 30

; Equivalent to
X =X +1
X +=1

; Equivalent to
;X =X *y
X *=y

Thereareall usual mathematical functionsin SPARK-PL like'sin', ‘cos, 'exp'. Commands 'floor’, 'ceil’, and
‘round’ are used for rounding a number (see SPARK-PL dictionary for afull description). The command
‘random & returnsarandom number uniformly distributed in theinterval [0,a) (thereturned valueisaways
less than a@). The command 'random-in-interval ab' returns a uniformly distributed random number in the
interval [a, b).

5.2. boolean

The next basic typeis'boolean’ (or 'boal’). Thisisalogical type. Variables of this type have two values:
true or false. The default value is false. Operators for boolean values are: 'and’, 'or', 'not'. The meaning
of these operators should be clear. There are several comparison operators for numbers which yield a

SPARK-PL: Introduction

boolean result: <, >, <=, >=, ==, I=, The last two operators mean equality and inequality respectively.
Logic operators are often used in 'if' command for combining different conditions.

if (x >30 and x < 100) or y ==
[
do- sonet hi ng x

]
5.3. string

Stringsin SPARK-PL are represented by the 'string’ type. Constants of this type should be always written
inside double quotes. There is a concatenation operation for strings represented by the '+' operator. Note:
operations and functions in SPARK-PL can be overloaded. It means that the same operator or the same
function name can correspond to several actual functions. Theright function is choosen based on the types
of arguments. An example of a command taking a string argument is 'print’. This command prints out its
argument in the standard output stream. Also this command can be used with numerical argumentsto print
out numbers (or with other typesto print out information about that types).

to do-sonet hing [X]

var strl = "hello,"
var str2 =" world"
print strl + str2
print X
end

5.4. vector

The next type is 'vector'. It is more advanced type representing a 3-d (or 2-d) vector. The constants of
this type has the form '[a, b, c]' where a, b, ¢ are some numerical constants (in the current SPARK-PL
implementation it is not allowed to have variables inside vector constants). There is a command ‘create-
vector' with three arguments which creates a new vector with the given entries. For this command any
arguments can be used. Also, vectors has al usual arithmetic operations: +, - for vectors, * for a vector
and a number, / for a vector on the left and a number on the right. Also shortcuts +=, -=, *=, /= work
for vectors (last two operators expect numbers on the right hand side). It is also possible to compare two
vectors using '=="and ''=" operators.

; Al vectors initialized by a zero vector by default
var vl : vector
var v2 = [1, 2, 3.3]

; vl =13, 6, 9.9]
vl =v2 * 3
v2 -= vl + v2 * 4

var v3 = create-vector vl.x (v2.y + 3) vl.y

The vector type has special methods. The method 'length’ returns the length of a vector. The method
'normalize’ normalizes a vector (makesit of the unit length) and returns the result of the normalization (it
modifiesthe vector which called 'normalize' and returns areference to the same vector after modification).
There are three fieldsin each vector: 'x', 'y, 'z' which represent the corresponding vector entries.

SPARK-PL: Introduction

; After the normalization we get vl == v2
v2 = vl.normalize

; Due to nunerical errors it cannot be guaranteed that
; vl.length == 1 exactly
v2.x = vl.length

5.5. Arrays and lists

All basic types discussed so far were primitive SPARK-PL types. Besides primitive types there are
composite types. The most important composite types are arrays and lists. In SPARK-PL it is often not
important whether a given object has an array or alist type because there are commands which work with
both typesin the sameway. In general, lists are more flexible, meanwhile arrays are more efficient. These
types are used for storing several objects of another typein the same variable. To declare avariable which
has alist type, use the following syntax

cl ass Testd ass

; Alist of vectors
var X : List<vector>

; An array of strings
var strings : Array<string>

; Alist of TestC ass objects
var tests : List<TestC ass>

Due to limitations of the current version of SPARK-PL, it is not possible to use 'number' and 'bool’ as a
subtype of composite types. Also, composite types cannot be used as arguments of other composite types.
If you need alist of numbers, then there are two simple solutions. One is to create a list of vectors and
then use only one component of each vector. Another solution isto create a custom class 'NumberClass
with one numeric field and use this class as the argument of composite types. The same trick works for
creating composite types which include other composite types.

Another limitation of the current version of SPARK is that it is not possible to use composite types as
return types of methods.

The command ‘count’ returns the number of objectsinside alist or an array. The command ‘create’ creates
an array of objects. This command has two arguments: atype name of objects to be created and a number
of objectsin the new array. This operation cannot be used for numbers and boolean values. All abjectsin
acreated array areinitialized by their default values. To get a particular element of an array (or alist) use
the 'get' command. It has two arguments: an array or alist and the index of an element there (indices start
from Q). Lists are created with the command ‘create-list' which has one argument: a name of the subtype.
Elements can be added to alist with 'add’ command, removed from alist with ‘remove’ command. Seethe
dictionary for all available list and array commands.

; Creates an array with 100 vectors
var array = create vector 100

; CGet the 4-th elenment in the array
var v = get array 3

10

SPARK-PL: Introduction

; Create a list of strings
var list = create-list string

; Add several strings to the |ist
l[ist.add "first”
list.add "second"

;. Renpve an elenment fromthe |ist
list.renpve "first"

; Prints "second"
print (get list 0)

The most useful command which can be used with arrays and lists is the ‘ask’ command. This command
does several things. To understand it completely, first look at another application of the 'ask’ command.
It can be used with any object (not with a number or a boolean value) as its argument. When a method is
executed there is always one implicit variable named 'self'. This variable refersto an object for which the
method is executed. Very often it is used implicitly.

cl ass Soned ass

to net hodl
end

to net hod2

; The next command will be translated as
; sel f. et hodl

; that is, the nethod 'nethodl' is called
; for the current active object.

met hod1

end

This'self' variable can be aways used explicitly. The command 'ask’ with an object argument temporary
changes this 'self' reference to its argument.

to net hod
var v : vector

v.Xx =1
vV.y = 2
v.z = 3

; The sane things in another way
ask v

[
; to the vector 'v', so its fields x, y, z
; can be accessed directly w thout
an explicit reference to the object
1
2
3

Inside this block '"self' reference is set

V.

N< X -
I n

11

SPARK-PL: Introduction

end

Now it iseasy to explain the effect of the ‘ask' command applied to an array (or alist). First of all, it iterates
through al objects inside an array, and during each iteration it assigns the 'self' reference to the current
object in the array and performs all commands inside the code block for that object.

to met hod
var array = create vector 100

var i =0
ask array
[

X =i

y =2 * |
z =3 * |
i +=1
]

end

Sometimes it is required to refer to an object which started the 'ask’ command inside the ‘ask’ command
block (remember that inside that block the 'self' reference is different). In order to do so, use 'myself'
reference. This reference always refers to an object which started the ‘ask’ command. Furthermore, ‘ask’
commands can be nested in each other. There is aso the reference 'this which returns a reference to the
object for which the current method is executed. Another referenceis 'parent’ which returns areferenceto
the parent object of 'this. The main purpose of the 'parent’ reference isto call a parent class method that
has the same name as a method in a child class from the child class.

cl ass Parent
var X : nunber

to function
end

class Child : Parent
var x : vector

to function
parent. function

ask create vector 100

[

; This refers to vector's x component
X =2

; This refers to a variable x defined in Child
myself.x = [1, 2, 3]

; This refers to a variable x defined in Parent
parent.x = 2

12

SPARK-PL: Introduction

; nmyself.x is a vector

ask nyself.x

[

; Now nyself refers to a vector

; fromthe previous 'ask' code bl ock
nyself.x =1

; Again we refer to Child.x
this.x = [3, 4, 5]
]
]

end

The last note is about visibility of variables inside ‘ask' blocks. All local variables are visible inside 'ask’
blocks. If there is afield in the object referred by 'self' with the same name as aloca variable, then the
local variable always shadows the field with the same name. Here is an example:

to sone- net hod
var =1
var vect or
V. X

In < X

2

ask v

[
; Prints 1
print Xx

; Prints 2
print self.x

]

end

13

