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odeling approaches offer a novel way to detect and predict coagulopathy in trauma patients. A dynamic model, built and tested on
thromboelastogram (TEG) data, was used to generate a virtual library of over 160,000 simulated RapidTEGs. The patient-specific pa-
rameters are the initial platelet count, platelet activation rate, thrombus growth rate, and lysis rate (P(0), k1, k2, and k3, respectively).
METHODS: P
atient data from both STAAMP (n = 182 patients) and PAMPer (n = 111 patients) clinical trials were collected. A total of 873
RapidTEGs were analyzed. One hundred sixteen TEGs indicated maximum amplitude (MA) below normal and 466 TEGs indi-
cated lysis percent above normal. Each patient's TEG response was compared against the virtual library of TEGs to determine li-
brary trajectories having the least sum-of-squared error versus the patient TEG up to each specified evaluation time∈ (3, 4, 5, 7.5,
10, 15, 20 minutes). Using 10 nearest-neighbor trajectories, a logistic regression was performed to predict if the patient TEG in-
dicated MA below normal (<50 mm), lysis percent 30 minutes after MA (LY30) greater than 3%, and/or blood transfusion need
using the parameters from the dynamic model.
RESULTS: T
he algorithm predicts abnormal MAvalues using the initial 3 minutes of RapidTEG data with a median area under the curve of
0.95, and improves with more data to 0.98 by 10 minutes. Prediction of future platelet and packed red blood cell transfusion based
on parameters at 4 and 5 minutes, respectively, provides equivalent predictions to the traditional TEG parameters in significantly
less time. Dynamic model parameters could not predict abnormal LY30 or future fresh-frozen plasma transfusion.
CONCLUSION: T
his analysis could be incorporated into TEG software and workflow to quickly estimate if the MA would be below or above
threshold value within the initial minutes following a TEG, along with an estimate of what blood products to have on hand.
(J Trauma Acute Care Surg. 2020;88: 654–660. Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.)
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I n the United States, trauma is the leading cause of death for in-
dividuals 46 and younger.1 This growing burden presents

many practical challenges in the Emergency Room and Inten-
sive Care Unit (ICU), especially for patients with impaired
coagulation. Approximately 33% of trauma patients develop
coagulopathy, representing an opportunity for improved person-
alized and timely protocol-based mitigation.2 Included in these
protocols, targeted fluid resuscitation with specific blood prod-
ucts can help coagulopathic patients by restoring necessary
components for coagulation.3–5 Increasingly, viscoelastic as-
says, such as the thromboelastogram (TEG) (Haemonetics;
Braintree, MA), are used in emergent situations where coagu-
lopathy might be of concern.4 Thromboelastogram-informed
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resuscitation protocols can correct impairments in coagulation
and have been shown to improve in-hospital and 28-day sur-
vival compared with conventional coagulation assay-based
protocols, which result in more products being transfused.3

Since faster point-of-care results in faster patient-specific trans-
fusion decisions, research on expediting TEG results could help
save patients' lives and optimize resource use.

Currently, the quickest TEG assay is the RapidTEG. The
RapidTEG activates both intrinsic and extrinsic clotting path-
ways and decreases time until results are reported, at the cost
of decreasing information obtained from the time until activation
parameter (R). Parameters reported with a RapidTEG include
R (time until activation), TEG ACT (Activated Clotting Time,
transformation of R), K (time until 20 mm clot strength is
reached), alpha angle (angle between horizontal and tangent
line to TEG curve, indicating speed of clot formation), maxi-
mum amplitude (MA) (traditionally associated with maximum
clot strength), % decrease in TEG amplitude 30 minutes after
MA (LY30), associated with clot lysis, and other less common
parameters. While R, TEG ACT, K, and alpha angle are deter-
mined within minutes of starting a RapidTEG and give informa-
tion on ability to form a clot, MA and LY30 take much longer
and inform clot strength and lysis.6 Time to MA (TMA) can ex-
ceed 20 minutes, and LY30 is not determined until 30 minutes
after MA is reached. Low MA (MA < 50 mm) has been shown
to indicate either low platelet count or function.4,6 High LY30
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(>3%) is indicative of abnormally high fibrinolysis. Some proto-
cols call for platelet transfusions for low MA or dosing
tranexamic acid to patients with high LY30.4 Therefore, know-
ing these parameters sooner would expedite treatment decisions.

To address the time delay before results are available, mul-
tiple sources have tested and reported a correlation between
TEG amplitude at early times and MA.7–9 Early times tested in-
clude 5 minutes and 10 minutes after R is reached. This simple
correlation could give an earlier estimate of clot strength to cli-
nicians, as lowMAhas been strongly linked to increasedmortal-
ity. The present work aims to develop a mechanistic relationship,
rather than simple correlation, which characterizes MA using as
little as 3 minutes of TEG data. In addition toMA, the feasibility
of early prediction of transfusion need was also assessed.
Figure 1. Visual representation of the dynamic model relating
the free platelets (P) with the activation at a rate of k1, activated
platelets (Pa) with clotting rate of k2, and thrombus (T) with a lysis
rate of k3.
METHODS

We use RapidTEG data to parametrize a personalized
mathematical model that captures changes in TEG amplitude
over the duration of the test. Model parameters are tested for
their ability to inform patient coagulation status before the out-
puts from the RapidTEG would be reported.

RapidTEG and Transfusion Data
RapidTEGs were collected from subjects enrolled in the

Study of Tranexamic Acid during Air Medical Prehospital trans-
port (STAAMP,10 total enrollment 994 subjects) and Prehospital
Air Medical Plasma (PAMPer,11,12 total enrollment 523 sub-
jects) clinical trials. The present study evaluates only patients
seen at the University of Pittsburgh Medical Center Healthcare
System. From a source population of 293 patients with 1044
TEGs, we extract 873 TEGs from 182 STAAMP patients
(n = 609 TEGs) and 111 PAMPer patients (n = 264 TEGs)
of sufficient quality for further analysis. This filtering process
is outlined in detail in the Supplemental Digital Content, Figures
S1-S6, http://links.lww.com/TA/B555. For the 873 TEGs, average
TMA, MA, and LY30 in this data set are 18.7(±5.6) minutes,
58.7 (±10.8) mm (SD, 10.8), and 1.4% (±5.8%), respectively. For
each TEG, a determination was madewhether there was insuffi-
cient coagulation (MA < 50 mm, n = 116) or excessive lysis
(LY30 > 3%, n = 466). Full transfusion data (platelets, red blood
cells, plasma, and cryoprecipitate) were available from medical
records for all PAMPer subjects. However, only 102 of those
subjects had a baseline TEG available.

Dynamic Model
Inspired by highly detailed, mechanistic models of the

clotting cascade,13–18 we developed an early indicator of co-
agulopathy coupling a simplified mathematical model of TEG
response and an algorithm for rapidly estimating key TEG pa-
rameters and transfusion needs. While a simplified model sacri-
fices mechanistic complexity, it is biologically inspired and fits
RapidTEG data well.19 The three states defined in this model
are (1) effective free platelets, P(t), (2) activated platelets, Pa(t),
and (3) thrombus, T(t). We coin the term effective free platelets
to designate circulating platelets physiologically ready for acti-
vation, which is a subset of the circulating platelet pool. In 25
random STAAMP patients with simultaneous RapidTEG and
platelet counts, we found a strong correlation between effective
© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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platelet count estimated by the model and platelet counts
(r = 0.66). In this three-state model, the time evolution of each
state is defined by a separate differential equation: platelets can
be activated, which drives thrombus formation, and then throm-
bus is broken down through the process of lysis (Fig. 1 and Eq.
1, 2, and 3):

dP tð Þ
dt

¼ −k1P tð Þ Eq: 1

dPa tð Þ
dt

¼ k1P tð Þ−k2Pa tð Þ2 Eq: 2

dT tð Þ
dt

¼ k2Pa tð Þ2−k3T tð Þ Eq: 3

There is an initial effective free platelet number P(0) that
characterizes the initial P(t) state. As platelets are activated, they
are lost from the P(t) state and added to the activated platelet
state, Pa(t) at a rate of k1. As thrombus forms, activated platelets
are then lost to the thrombus state, T(t), with a squared depen-
dence upon Pa(t) and a rate of k2. Initially, a linear dependence
was tested, however, the squared dependence resulted in im-
proved fits across all TEG data. The thrombus state is broken
down with a lysis rate k3. The resulting four model parameters
include the initial effective free platelet number P(0), platelet ac-
tivation rate (k1), thrombus growth rate (k2), and lysis rate (k3).
Further, parameter k1 was fixed based on initial RapidTEG data,
using a scaled value of the inverse of the time until 4 mm in am-
plitude was reached ( t4) resembling the TEG's R parameter, as
shown in Equation 4:

k1 ¼ 1:1
t4

Eq: 4

This relationship was found to quite robust across the en-
tire set of TEGs. The other TEG-specific parameters (P(0), k2,
k3) were estimated for each RapidTEG by minimizing the sum
of squared error between the upper half of the TEG tracing
and the model state T(t) (Eq. 3).

RapidTEG Virtual Library
We examined whether partial RapidTEG data could be

used to predict full RapidTEG trajectories. We first created the
RapidTEG virtual library, a set of over 167,000 reference
RapidTEG trajectories, by varying parameters P(0), k1, k2, and
k3 over a range of plausible values determined from fits of the
dynamic model to TEG data. The range of TEG trajectories in
655

ealth, Inc. All rights reserved.

http://links.lww.com/TA/B555


Pressly et al.
J Trauma Acute Care Surg

Volume 88, Number 5
the virtual library covers a wide range of possible TEG shapes
that have been observed by clinicians and in our data set. The
advantage of a virtual library is that it allows, given an actual
partial RapidTEG tracing, very rapid identification of similar
partial trajectories from the virtual library. Since each simu-
lated trajectory has been creating using a set of parameters,
matching these partial trajectories associates the RapidTEG
tracing with sets of parameters corresponding to these similar
simulated trajectories. Specifically, using the library of simu-
lated RapidTEGs and the individual patients' RapidTEGs, the
following steps were performed:

1. Apply a window of time (the initial 3, 4, 5, 7.5, 10, 15 or
20 minutes) to both the RapidTEG data and simulated
RapidTEGs from the virtual library.

2. Compute sum-of-squared error (SSE) between a subject's
RapidTEG and the library trajectories over the specified
timewindow (3, 4, 5, 7.5, 10, 15, or 20 minutes). This quan-
tifies of how close each entry in the library is to the TEG be-
ing tested.

3. For each RapidTEG and each window of time, select the
nearest 10 parameter sets (P(0), k1, k2, k3) representing sim-
ulated trajectories with the smallest SSE over each timewin-
dow. The design choice of 10 nearest neighbors is user
dependent and the basis for this decision is supported in
Supplemental Digital Content, Figure S7, and Table S1,
http://links.lww.com/TA/B555.

4. Use, over each timewindow, the 10 parameter sets along with
SSE to project the entire RapidTEG trajectory and predict oc-
currence of low MA, high LY30, and transfusion need.

Predicting MA and LY30
We evaluated whether dynamic model parameters could

predict MA as a continuous output, and whether this prediction
improved with increasing information (i.e., more time) from the
TEG trajectory. Using dynamic model parameters from the 10-
nearest neighbors fit to each partial TEG trajectory as predictors,
a linear regressionmodelwas developed to predict MA. Fit qual-
ity was assessed using the R-squared value.

When trying to predict coagulopathy defined by TEG out-
puts (MA < 50 mm or LY30 ≥ 3%) using dynamic model pa-
rameters, step 4 of the algorithm was achieved using four
logistic regression (LR) models using 10 nearest-neighbor pa-
rameter sets from the virtual library to predict each of the four
outcomes (normal or low MA; normal or high lysis) for each
window of RapidTEG data (first 3, 4, 5, 7.5, 10, 15 or
20 minutes). LR models were developed (n = 585 TEGs) and
tested (n = 288 TEGs), where development and test groups
had equal incidence of lowMA or high LY30. To screen param-
eters to include in the multivariate models, univariate LR was
first performed, and significant parameters (p < 0.05) were
retained. To further test the robustness of the prediction accuracy
associated with changes in the randomized splits of this smaller
data set, a threefold cross validation process was conducted.
This threefold cross validation process includes; randomly split-
ting the data into three sets of n = 291 TEGs, training on two
sets, testing on the third, then repeating the process so that each
set is tested once, and recording the performance of each fold.
Performance is measured by taking the area under the curve
656
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(AUC) of the receiver operating characteristic (ROC) curve of
all three folds. This procedure is repeated 100 times. By combin-
ing the 100 random splits, a distribution of 300 different AUCs
were obtained for each of the time points tested (3, 4, 5, 7.5, 10,
15, or 20 minutes). LR performance is traditionally evaluated
using only AUC reported on the test sets.20,21 Results were com-
pared with the LR prediction of the instantaneous amplitude at
the last time point seen by the algorithm (3, 4, 5, 7.5, 10, 15,
or 20 minutes), as well as an additional comparison combining
the model parameters with the amplitude in an additional com-
bined LRmodel. Differences between means of the distributions
of AUCs were tested using the Student's t test.

Predicting Transfusion Administration
Traditional RapidTEG parameters and dynamic model pa-

rameters were used separately to predict transfusions within
24 hours of admission and 24 hours after the start of a baseline
TEG (Supplemental Digital Content, Figure S8, http://links.
lww.com/TA/B555). A distinctly marked time zero (baseline)
TEG was only available for 102 subjects. Cryoprecipitate was
administered in small subset of subjects (n = 12), thus models
predicting cryoprecipitate transfusion were not considered.

We developed logistic regression (LR) models to predict
transfusions using dynamic model parameters associated with
outcome from univariate analysis for each window of data (3,
4, 5, 7.5, 10, 15, or 20minutes). LRmodels were also built using
standard TEG parameters (R, MA, K, alpha, LY30) from the full
tracing. The same validation approach was used for all statistical
models. Results were compared with the LR prediction of the
instantaneous amplitude at the last time point seen by the al-
gorithm (3, 4, 5, 7.5, 10, 15, or 20 minutes), as well as an ad-
ditional comparison when combining model parameters with
amplitude in an additional combined LR model. Results for
all time windows and for all three of these models are presented
in Supplemental Digital Content, Figure S9, http://links.lww.
com/TA/B555.
RESULTS

At the time of this study, 994 subjects had been enrolled in
STAAMP. A total of 523 subjects were enrolled in PAMPer
(completed 2017). Within the subset of subjects enrolled at the
University of Pittsburgh with available TEG data, and after elim-
inating incomplete or discontinuous TEGs, 84% of TEGs re-
mained (293 subjects, n = 873 TEGs). Discontinuous or
incomplete TEGs removed included TEGs that were stopped
early (<1000 seconds), had excessively low amplitudes (i.e., flat
lines), or large jumps between data points (the full procedure for
removing TEGs can be found in Supplemental Digital Content,
Figures S2-S6, http://links.lww.com/TA/B555). The split
between STAAMP and PAMPer was 182 subjects with
n = 609 TEGs, and 111 patients with n = 264 TEGs, respec-
tively. Trial treatment assignment and outcomes are yet to be
presented for the STAAMP trial. Subject characteristics
from this subset are presented in Table 1. The table shows
that the combination of both clinical trials and how this results
in expanded diversity in the population (specifically for Injury
Severity Score and PAMPer versus STAAMP), The two studies
have similar demographics.
© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 1. Patient Demographics and in-Hospital Mortality
Information Available From University of Pittsburgh
Medical Center

STAAMP PAMPer Total

Total patients (N) 182 111 293

Females 43 (24%) 26 (23%) 69 (23%)

White 132 (73%) 72 (65%) 204 (70%)

Black 12 (6.6%) 7 (6.3%) 19 (6.5%)

Not white or Black 32 (29%) 38 (21%) 70 (24%)

Average age ± SD 41 ± 18 45 ± 18 43 ± 18

Average ISS ± SD 13.5 ± 10.9 20.0 ± 13.1 16.1 ± 12.2

Blunt injury 150 (82%) 96 (86%) 246 (84%)

Penetrating injury 32 (18%) 15 (14%) 47 (16%)

In-hospital mortality 21 (12%) 25 (23%) 46 (16%)

SD, standard deviation; ISS, Injury Severity Score.

J Trauma Acute Care Surg
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Dynamic Model Performance
The dynamic model produced very good fits to RapidTEGs,

with mean absolute error per point across all TEGs of 0.24 mm.
Model performance over the full trajectories can be demonstrated
by comparing the average per point error (or residual error) at
all time points. An example fit to a RapidTEG, is shown in
Figure 2A. A plot of the per point residual error for the top half
of all TEGs is shown in Figure 2B, with 2 standard deviations at
each point outlined by the gray envelope. The analysis shows
how the average per point error is low, with two standard devia-
tions resulting in smaller than ±3 mm of error at any time point.
Dynamic model fits have a tendency to overshoot data in the first
minute of the TEG trajectory. This tendency represents an ex-
pected structural shortcoming of a highly simplified ODE
model and an inability to capture data with observed delay.
However, overall the performance is still acceptable, and to high-
light when the model fails to capture data, we show the highest
SSE TEGs in the Supplemental Digital Content, Figure S10,
http://links.lww.com/TA/B555.

Predicting TEG Output
Linear regression results for predicting MA are shown in

Table 2. Dynamic model parameters P(0), k1, k2, and k3, as well
Figure 2. (A) Representative RapidTEG (in gray) with the model fit sho
the top half the fitted TEG averaged at each time point of all 873 Rapid
the residual error.

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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as SSE proved significant in predicting MA from partial trajec-
tories. Increasing R2 values with increasing length of partial tra-
jectories was observed, confirming increased predictive ability
with time, as expected.

Figure 3 shows how AUC increases with additional data
(longer time windows) for predicting MA < 50 mm; median
AUC is 0.90 with 3 minutes of data collected using our algo-
rithm (P). In general, this figure also shows that accuracy using
the amplitude alone (A) out-predicts the model parameters.
However, the combined model (PA, using the amplitude along
with our model parameters), the AUC using 3, 4 and 5 minutes
is boosted above the accuracy of either (P or A) predicted alone,
with a median AUC of 0.95 with only 3 minutes of data. Re-
gression gave inaccurate and insignificant predictive results
for LY30 > 3%, with AUCs near 0.5 for all time points, except
a small improvement at 20 minutes to a median AUC of 0.66.
Full lysis predictions are shown in Supplemental Digital Con-
tent, Figure S11, http://links.lww.com/TA/B555. These results
are unsurprising because lysis contributes to long time-scale
TEG response, so an algorithm's ability to estimate LY30 from
the initial minutes of data is expected to be poor and improve
slightly with more data.

Predicting Transfusion Administration
Of the 102 PAMPer subjects with an initial RapidTEG and

transfusion data, 67 (65.7%) subjects received PRBC and 30
(29.4%) subjects received PLT during their hospital stay. Of this
subset of RapidTEGs, 29 of the 102 RapidTEGs exhibited low
MA. In univariate analysis, the only traditional TEG parame-
ter predictive of transfusion administration in the 24 hours
postenrollment was MA, and it was also predictive of PRBC
and PLT administration in the 24 hours following the initial
TEG. Figure 4 compares the performance of dynamic model
parameters computed from partial TEG tracings (P), instanta-
neous amplitude (A), and the combination of the two (PA) to full
TEG data for predicting PLT and PRBC transfusion administra-
tion. The ability to predict PRBC transfusion from partial TEG
data (Fig. 4A) is lower than the ability to predict platelet transfu-
sion, as determined by consistently lower AUCs than Figure 4B.
The PLT transfusion predictions are statistically equal to the per-
formance using full TEG parameters by 10minutes, arguing this
wn (in black), (B) Residual error (in mm) between the model and
TEGs (in black), the range (in gray) outlines the 95th percentile of

657

ealth, Inc. All rights reserved.

http://links.lww.com/TA/B555
http://links.lww.com/TA/B555


TABLE 2. Model Parameters (P(0), k1, k2, k3) Along With the
Addition to Sum of Squared Error (SSE) Showing the Significance
for Predicting MA of the TEG, as Calculated by Linear Regression

Time (min) Parameters and Significance R2

3 P(0)*, k1*, k2*, k3*, SSE** 0.477

4 P(0) *, k1*, k2*, k3*, SSE* 0.512

5 P(0) *, k1*, k2*, k3*, SSE* 0.596

7.5 P(0)*, k1*, k2*, k3* 0.681

10 P(0)*, k1*, k2*, k3* 0.727

15 P(0)*, k1*, k2*, k3*, SSE* 0.830

20 P(0)*, k1*, k2*, k3*, SSE* 0.866

p value codes: *<0.0001, ** <0.01.
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would provide a noninferior prediction. Dynamic parameters
approach the accuracy of TEG data to predict PRBC adminis-
tered within 24 hours postenrollment with an AUC slightly
lower than that of the full TEG tracing as determined by
Wilcoxon tests between distributions and the full TEG parame-
ter predictions. Neither full TEG tracings nor dynamic model
parameters have the ability to predict PRBC administered
24 hours after the TEG was obtained. When comparing the in-
stantaneous amplitude (A) ability to predict transfusion, there
were small improvements observed in AUCs for PRBC pre-
dictions at 3 minutes (median AUC: 0.6). Predicting fresh fro-
zen plasma transfusion with our method proved to be
significantly less accurate than using the traditional TEG param-
eters as shown in the Supplemental Digital Content, Figure S12,
http://links.lww.com/TA/B555.
DISCUSSION

When hemostasis cannot be established easily, having fast
point-of-care options could offer improved resource utilization—
choosing the right treatment at the right time. To address this
problem, our work examined the performance of a faster point-
of-care assessment of specific coagulation challenges. By imple-
menting a simple dynamic model of coagulation, as observed in
the ex vivo TEG, valuable clinical information can be extracted
with high AUC.
Figure 3. Ability of dynamic model parameters from partial trajectorie
10, 15, or 20 minutes), using model parameters (PX), amplitude at X
ROC of the LR in the test set versus amount of TEG data used (in minu
the algorithm.
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We calibrated a simple model—while still capturing some
mechanistic information—in available clinical data. More de-
tailed models of the clotting cascade have been developed,13–18

some expanding on Jones and Mann13–16 and others looking at
multiscale integration of dynamics and the physical forces into
discrete models.17,18 While these models capture detailed mech-
anistic information, including clotting factors and other physio-
logical considerations, it would be challenging to obtain reliable
and unique estimates of model parameters in these complex de-
scriptions. Our simplified mechanism trades off complexity for
identifiability of model parameters to provide a small number
of sensitive parameters that capture TEG response.

Even though our model captures TEG data, it is still too
simple to identify exact deficits in the coagulation cascade.
However, compared to the published simple correlations be-
tween amplitude at initial time points and MA, this work rep-
resents a step towards a physiologically motivated approach.
Where RapidTEGs are available, the opportunity for direct
translation to patient-specific recommendations from this
work is motivated by the AUCs of our predictions within the
initial minutes of data collection. For a more in depth compar-
ison over the different time points, the ROC curves, precision-
recall curves, a sensitivity and specificity comparison, and a
parameter versus MA analysis are shown in Supplemental
Digital Content, Figures S13-S15, http://links.lww.com/TA/
B555, respectively.

Only 3 minutes of TEG data were needed to predict MA
problems with AUC at or above 0.90 with model parameters
alone. Adding instantaneous amplitude results in a boosted
AUC of 0.95. These accuracies increase with more data, until
reaching an AUC of 0.99 at 15 minutes. With this method, quick
preliminary analysis and outputs of MA projected above or be-
low the (50 mm) threshold would decrease time until patient-
specific treatment decisions can be made. Providing an initial
estimate from our algorithm to clinicians would outpace all
other available point-of-care coagulation assays. Furthermore,
when the time until MA can be over 30 minutes, any advanced
notice of low MA is expected to improve clinical outcomes.
The risks associated with making clinical treatment decisions
using an initial estimate versus waiting for the full TEG, would
have to be further analyzed through a prospective clinical trial
to verify the safety and utility in the clinical workflow.
s to predictMA < 50mm at different time points (X = 3, 4, 5, 7.5,
(AX), and the combination (PAX). Plots show the AUC from the
tes) using the 10 nearest neighbor parameter sets as selected by

© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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Figure 4. Accuracy (AUC of the ROC) of multiple predictions of transfused blood products using the 10 KNN parameters (P), the
instantaneous amplitude (A), and the combination of both (PA) at 3, 4, 5, and 10 minutes, and additionally using traditional (full) TEG
predictions (labeled TEG), for: (A) PRBC within 24 hours of enrollment, and (C) PLT within 24 hours of enrollment. Lines are drawn at
50% accuracy to emphasize the points where estimates lose their clinical utility. p value codes: **: <0.01, ***: <0.001, ****: <0.0001.

J Trauma Acute Care Surg
Volume 88, Number 5 Pressly et al.
There are limitations to our method. For the prediction of
transfusions, we were limited by the small number of patients
with transfusion data (n = 102). Thus, although we are confident
in the reported accuracy of the determination that subjects did or
did not receive blood products, the generalizability of this work
may be limited. Once the clinical trials conclude, we plan to add
additional transfusion data to mitigate this limitation. Many cur-
rent trauma protocols call for the administration of fixed ratios of
red blood cell units and platelets, thus leaving little room for per-
sonalizing transfusional support, which is reasonable in subjects
bleeding profusely. Our method more appropriately targets
fewer extreme cases where transfusional needs are not immedi-
ately apparent or when patients develop a coagulopathic pheno-
type. Our current algorithm is unable to detect lysis problems or
need of plasma (fresh frozen plasma) transfusion. Although the
former is not surprising, it suggests modifications of the algo-
rithm using longer time windows, possibly combined with a
data set enriched for patients with high lysis. Other approaches
would be to use a more refined mesh for the remaining param-
eters or perform a simpler (1 parameter) optimization. This
type of improvement may result in more comprehensive early
profiling of coagulation, and thereby potentially improved co-
agulopathy identification. As for the deficiencies in the predic-
tion accuracy of different transfusions in both the TEG and
© 2020 Wolters Kluwer Health, Inc. All rights reserved.
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model parameters, this limitation could also be mitigated by in-
creasing sample size.

Moving forward, improvements could be made to the dy-
namic model. First, as additional analytes and assays become
available in the clinic, such as fibrinogen level and thrombin
generation assays, models could be modified to explicitly in-
clude appropriate dynamics. Additional model structures are
also being tested by our group to accurately simulate other
variants of thromboelastic assays, beyond the RapidTEG. Ide-
ally, it would be best to compute optimal fit parameters in
real-time, as the TEG is generated. Currently, this patient-
fitting optimization routine is not sufficiently rapid, reliably
identifiable, or guaranteed to converge, motivating the use
of a concrete algorithm: relying on a virtual library that can in-
put data during collection and map a range of parameter space
that ultimately provides useful predictions. As computational
power becomes increasingly available, it may become possi-
ble to directly estimate optimal ranges of dynamic parameters
with minimal delay. In the absence of these additional resources,
however, improvements could be made to the virtual library by
including potentially more targeted discretization of the param-
eters generating the virtual library. This involves deeper analysis
of parameter distributions from optimization, and testing addi-
tional discretization.
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Overall, the impact of this proposed algorithm in the clinic
lies in accurate and fast predictions of coagulopathy and transfu-
sion need directly or through MA, a clinical parameter that cur-
rently guides standard of care transfusion protocols. One could
envision embedding the algorithm presented here into point-
of-care viscoelastic hardware or on a website where clinicians
upload a photo of a TEG in-progress, thereby providing early
prediction of coagulopathy and clinical decision support only
minutes after initiating the assay.
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