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METHODS FOR PREDICTING PROSTATE CANCER RELAPSE

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Serial No.

62/202,532, filed August 7, 2015, to which priority is claimed and the contents of which

are incorporated herein in its entirety.

GRANT INFORMATION

This invention was made with government support under Grant No. CA098249

awarded by the National Cancer Institute. The government has certain rights in the

invention.

1. INTRODUCTION

The present invention relates to methods for determining whether a subject having

prostate cancer is at increased risk for relapse or rapid relapse.

2. BACKGROUND OF THE INVENTION

Prostate cancer is one of the leading causes of death for men in the United States,

and about 30,000 patients die of prostate cancer annually (4). Since the implementation of

serum prostate specific antigen (PSA) screening, the clinical detection rate of prostate

cancer has increased substantially due primarily to the identification of small, low grade

cancers that would likely not progress (1). Several treatment options are available for

prostate cancer patients including watchful waiting, radiation, hormonal/chemo-therapy

and radical prostatectomy. Gleason grading, alone or in combination with other clinical

indicators such as serum PSA levels, and pathological or clinical staging, has been the

guiding tool in selecting these treatment options. However, prostate cancer has

considerable heterogeneity in biological aggressiveness and clinical prognosis (1-3) and

accurate prediction of the aggressive behavior of prostate cancer remains difficult. In

addition, a significant number of prostate cancer patients experience recurrence after

surgical resection of the prostate gland. Therefore, there is a need in the art for methods

for more accurately determining the prognosis of prostate cancer.
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3. SUMMARY OF THE INVENTION

The present invention relates to methods for determining whether a prostate cancer

patient is at increased risk of suffering a relapse or a rapid relapse of his cancer and further

relates to kits for performing such methods. It is based, at least in part, on the results of a

comprehensive genome analysis performed on 273 prostate cancer samples, which

indicate that the percentage of large size CNVs predicts prostate cancer relapse.

The present invention provides methods for determining whether a prostate cancer

patient is at an increased risk of suffering a relapse or a rapid relapse. In certain

embodiments, the method comprises determining the number and size of CNVs in a

sample and determining the large size ratio, where if the large size ratio (LSR) exceeds a

particular threshold, the patient is deemed to be at an increased risk for relapse or rapid

relapse (relative to subjects having a LSR below that threshold). In certain embodiments,

the sample can be a blood sample or a tumor sample. In certain embodiments, the large

size ratio is calculated by dividing the number of CNVs that are larger in size than a cut-

off value by the total number of CNVs. In certain embodiments, the cut-off value is about

25 kb or about 30 kb, and a large size ratio equal to or greater than about 0.28 is indicative

that the patient is at an increased risk for relapse. In certain embodiments, the cut-off

value is about 400 or about 500 kb, and a large size ratio equal to or greater than about

0.02 is indicative that the patient is at an increased risk for rapid relapse.

The present invention further provides methods for determining whether a prostate

cancer patient is at a decreased risk of suffering a relapse or a rapid relapse. In certain

embodiments, the method comprises determining the number and size of CNVs in a

sample and determining the large size ratio, where if the large size ratio is less than a

particular threshold, the patient is deemed to be at a decreased risk for relapse or rapid

relapse. In certain embodiments, the sample can be a blood sample or a tumor sample. In

certain embodiments, the large size ratio is calculated by dividing the number of CNVs

that are larger in size than a cut-off value by the total number of CNVs. In certain

embodiments, the cut-off value is about 25 kb or about 30 kb, and a large size ratio less

than about 0.28 is indicative that the patient is at a decreased risk for relapse. In certain

embodiments, the cut-off value is about 400 or about 500 kb, and a large size ratio less

than about 0.02 is indicative that the patient is at a decreased risk for rapid relapse.

The present invention further provides a method for treating a prostate cancer

patient that includes determining whether the prostate cancer patient is at increased risk for

relapse or rapid relapse, where if the prostate cancer patient is deemed to be at an
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increased risk for relapse or rapid relapse, then performing a prophylactic and/or treatment

regimen. In certain embodiments, determining whether the prostate cancer patient is at an

increased risk for relapse or rapid relapse comprises determining the number and size of

copy number variations (CNVs) in a sample from the patient and determining a large size

ratio, where if the large size ratio exceeds a particular threshold, the patient is deemed to

be at an increased risk for relapse or rapid relapse. In certain embodiments, the large size

ratio is calculated by dividing the number of CNVs that are larger in size than a cut-off

value by the total number of CNVs. In certain embodiments, the cut-off value is about 25

kb or about 30 kb. Alternatively, the cut-off value is about 400 or about 500 kb. In

certain embodiments, a large size ratio equal to or greater than about 0.28 is indicative that

the patient is at an increased risk for relapse. In certain embodiments, a large size ratio

equal to or greater than about 0.02 is indicative that the patient is at an increased risk for

rapid relapse. In certain embodiments, the prophylactic and/or treatment regimen is

selected from the group consisting of cryotherapy, radiation therapy, chemotherapy,

hormone therapy, biologic therapy, bisphosphonate therapy, high-intensity focused

ultrasound, frequent monitoring, frequent prostate-specific antigen (PSA) checks, radical

prostatectomy and combinations thereof.

The present invention further provides a method for treating a prostate cancer

patient comprising determining whether the prostate cancer patient is at a decreased risk

for relapse or rapid relapse, where if the prostate cancer patient is deemed to be at a

decreased risk for relapse or rapid relapse, then performing one or more of the following:

high-intensity focused ultrasound, watchful waiting, frequent monitoring, frequent PSA

checks and/or a biopsy. In certain embodiments, determining whether the prostate cancer

patient is at a decreased risk for relapse or rapid relapse can include determining the

number and size of copy number variations (CNVs) in a sample from the patient and

determining a large size ratio, where if the large size ratio is less than a particular

threshold, the patient is deemed to be at a decreased risk for relapse or rapid relapse. In

certain embodiments, the large size ratio is calculated by dividing the number of CNVs

that are larger in size than a cut-off value by the total number of CNVs. In certain

embodiments, the cut-off value is about 25 kb or about 30 kb. Alternatively, the cut-off

value is about 400 or about 500 kb. In certain embodiments, a large size ratio less than

about 0.28 is indicative that the patient is at a decreased risk for relapse. In certain

embodiments, a large size ratio less than about 0.02 is indicative that the patient is at a

decreased risk for rapid relapse.
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In certain embodiments, a method of determining that a prostate cancer patient is at

an increased risk for relapse comprises determining the number and size of copy number

variations (CNVs) in a sample from the patient and determining a large size ratio, where if

the large size ratio is greater than or equal to about 0.28, the patient is deemed to be at an

increased risk for relapse. In certain embodiments, the large size ratio is calculated by

dividing the number of CNVs that are larger in size than a cut-off value of about 25 kb or

about 30 kb by the total number of CNVs.

In certain embodiments, a method of determining that a prostate cancer patient is at

an increased risk for rapid relapse comprises determining the number and size of copy

number variations (CNVs) in a sample from the patient and determining a large size ratio,

where if the large size ratio is greater than or equal to about 0.02, the patient is deemed to

be at an increased risk for rapid relapse. In certain embodiments, the large size ratio is

calculated by dividing the number of CNVs that are larger in size than a cut-off value of

about 400 or about 500 kb by the total number of CNVs.

In certain embodiments, a method of determining that a prostate cancer patient is

at a decreased risk for relapse comprises determining the number and size of copy number

variations (CNVs) in a sample from the patient and determining a large size ratio, where if

the large size ratio is less than about 0.28, the patient is deemed to be at a decreased risk

for relapse. In certain embodiments, the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value of about 25 kb or about 30 kb

by the total number of CNVs.

In certain embodiments, a method of determining that a prostate cancer patient is at

a decreased risk for rapid relapse comprises determining the number and size of copy

number variations (CNVs) in a sample from the patient and determining a large size ratio,

where if the large size ratio is less than about 0.02, the patient is deemed to be at a

decreased risk for rapid relapse. In certain embodiments, the large size ratio is calculated

by dividing the number of CNVs that are larger in size than a cut-off value of about 400 or

about 500 kb by the total number of CNVs.

In certain embodiments, methods of the present invention can further include

determining the Gleason grade of the cancer, generating a nomogram and/or determining

fusion gene status of the cancer. In certain embodiments, the fusion gene is selected from

the group consisting of TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1,

LRRC59-FLJ60017, TMEM135-CCDC67, KDM4B-AC011523.2, CCNH-C5orf30,

MAN2A1-FER and combinations thereof.
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The present invention further provides kits for determining whether a prostate

cancer patient is at an increased risk for relapse and/or rapid relapse. In certain

embodiments, the kit can include a means for analyzing the number and size of copy

number variations (CNVs) in one or more genes. In certain embodiments, the means for

analyzing the number and size of CNVs can comprise an array and/or microarray suitable

for detecting the CNVs. In certain embodiments, the method can further include a

software or internet access to software, in electronically readable form, that determines the

number and size of CNVs in the one or more genes represented in the array and/or

microarray. For example, and not by way of limitation, the software can (a) determine

whether the CNVs exceed or fall below a size cut-off value and (b) determine the large

size ratio. In certain embodiments, the large size ratio is calculated by dividing the

number of CNVs that are larger in size than the cut-off value by the total number of

CNVs. In certain embodiments, the kit can further comprise a means for detecting one or

more fusion genes within a sample of the prostate cancer patient. In certain embodiments,

the means for detecting the one or more fusion genes can include one or more fusion gene-

specific probe and/or primer sets, arrays/microarrays or antibodies for detecting the one or

more fusion genes. In certain embodiments, the one or more fusion genes are selected

from the group consisting of TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1,

LRRC59-FLJ60017, TMEM135-CCDC67, KDM4B-AC011523.2, CCNH-C5orf30,

MAN2A1-FER and combinations thereof.

4. BRIEF DESCRIPTION OF THE FIGURES

Figure 1A-B. Copy number variations (CNV) in blood and prostate cancer from

prostate cancer patients. Figure 1A. Histogram of frequency of amplification (light gray)

or deletion (dark gray) of genome sequences of leukocytes (upper panel, n=273) from

prostate cancer patients. Figure 1B. Manhattan plots of p-values in association with

prostate cancer recurrence of each gene CNV from leukocytes.

Figure 2A-C. Large size ratio (LSR) of CNVs from leukocytes from prostate

cancer patients are correlated with aggressive behavior of prostate cancer. Figure 2A.

Schematic diagram of LSR model of leukocyte CNV. Figure 2B. LSRs from leukocytes

are associated with aggressive prostate cancer recurrence behavior. Upper panel:

Correlation of LSRs from leukocyte genomes with prostate cancers that were recurrent;

Lower panel: Correlation of LSRs from leukocyte genomes with prostate cancers that

were non-recurrent 90 months after radical prostatectomy. Figure 2C. LSRs from
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leukocytes are associated with short prostate specific antigen doubling time (PSADT).

Upper panel: Correlation of LSRs from leukocyte genomes with prostate cancers that had

recurrent serum PSADT of 4 months or less; Lower panel: Correlation of LSRs from

leukocyte genomes with prostate cancers that were not recurrent or recurrent but having

PSADT of 15 months or more.

Figure 3A-B. LSR of genome CNV from leukocytes to predict prostate cancer

recurrence. Figure 3A. LSR derived from leukocyte genome CNV predicts prostate

cancer recurrence. Receiver operating curve (ROC) analyses using LSRs derived from

leukocyte CNVs as prediction parameter (dark gray, dashed line) to predict prostate cancer

recurrence, versus Nomogram (dotted line), Gleason’s grade (dash-dotted line) and the

status of 8 fusion transcripts (14) (light gray, dashed line). The samples were equally split

randomly into training and testing sets 10 times. The ROC analysis represents the results

from the most representative split. Figure 3B. Combination of LSR (L), Gleason’s grade

(G), Nomogram (N) and the status of fusion transcripts (F) to predict prostate cancer

recurrence. ROC analysis of a model combining LSR, fusion transcripts, Nomogram and

Gleason’s grade using linear discriminant analysis (LDA) is indicated by a black solid

line. ROC analysis of a model combining fusion transcripts, Nomogram and Gleason’s

grade using LDA is indicated by a dark gray dashed line. ROC analysis of a model

combining LSR, fusion transcripts and Gleason’s grade using LDA is indicated by a

dotted line. ROC analysis of a model combining LSR, fusion transcripts and Nomogram

using LDA is indicated by a dash-dotted line. ROC analysis of a model combining LSR,

Nomogram and Gleason’s grade is indicated by a light gray dashed line. Similar random

splits of training and testing data sets were performed as of (A).

Figure 4. Large LSRs of genome CNVs from leukocytes correlated with lower

PSA-free survival. Kaplan-Meier analysis on patients predicted by LSR based on CNV of

patients’ leukocytes as likely recurrent versus likely non-recurrent (upper left). Similar

survival analyses were also performed on case segregations based on Gleason’s grades

(upper middle), Nomogram probability (upper right), the status of 8 fusion transcripts

(lower left), or a model by combining LSR, Nomogram and fusion transcript status using

LDA (lower middle), or a model by combining LSR, Nomogram, Gleason grade and

fusion transcript status using LDA (lower right). Number of samples analyzed and p

values are indicated.

Figure 5A-B. LSR of genome CNV from leukocytes to predict prostate cancer

recurrence with short PSADT. LSR derived from leukocyte genome CNV predicts
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PSADT of 4 months or less. Figure 5A. ROC analysis using LSRs derived from leukocyte

CNVs as a prediction parameter (dark gray, dashed line) to predict PSADT 4 months or

less, versus Nomogram (dotted line), Gleason’s grade (dash-dotted line) and the status of 8

fusion transcripts (14) (light gray, dashed line). Samples were analyzed by the same

procedure as Figure 3. Figure 5B. Combination of LSR (L), Gleason’s grade (G),

Nomogram (N) and the status of fusion transcripts (F) to predict prostate cancer recurrent

PSADT 4 months or less. ROC analysis of a model combining LSR, fusion transcripts,

Nomogram and Gleason’s grade using LDA is indicated by a black solid line. ROC

analysis of a model combining fusion transcripts, Nomogram and Gleason’s grade using

LDA is indicated by a dark gray dashed line. ROC analysis of a model combining LSR,

fusion transcripts and Gleason’s grade using LDA is indicated by a dotted line. ROC

analysis of a model combining LSR, fusion transcripts and Nomogram using LDA is

indicated by a dash-dotted line. ROC analysis of a model combining LSR, Nomogram

and Gleason’s grade is indicated by a light gray dashed line.

Figure 6. Genome CNVs from leukocytes predicting short PSADT correlated with

lower PSA-free survival. Kaplan-Meier analysis on patients predicted by LSR based on

CNV of patients’ leukocytes as likely recurrent and having PSADT 4 months or less

versus likely non-recurrent or recurrent but having PSADT of 15 months or more (upper

left). Similar survival analyses were also performed on case segregations based on

Gleason’s grades (upper middle), Nomogram probability (upper right), the status of 8

fusion transcripts (lower left), or a model by combining LSR, Nomogram and fusion

transcript status using LDA (lower middle), or a model by combining LSR, Nomogram,

Gleason grade and fusion transcript status using LDA (lower right). Number of samples

analyzed and p values are indicated.

Figure 7. Correlation of area under the curve (AUC) with LSR in predicting

prostate cancer recurrence (left panel) or in predicting recurrent PSADT of <4 months

(right panel).

Figure 8A-B. LSR of genome CNV from leukocytes to predict prostate cancer

likely lethality. Figure 8A. LSR derived from leukocyte genome CNV predicts prostate

cancer likely lethality (recurrent within 12 months of radical prostatectomy and PSADT of

<4 months). Receiver operating curve (ROC) analyses using LSRs derived from

leukocyte CNVs as prediction parameter (dark gray, dashed line) to predict prostate cancer

likely lethality, versus Nomogram (dotted line), Gleason’s grade (dash-dotted line) and the

status of 8 fusion transcripts (14) (light gray, dashed line). The samples were equally split
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randomly into training and testing sets 10 times. The ROC analysis represents the results

from the most representative split. Figure 8B. Combination of LSR (L), Gleason’s grade

(G), Nomogram (N) and the status of fusion transcripts (F) to predict prostate cancer likely

lethality. ROC analysis of a model combining LSR, fusion transcripts, Nomogram and

Gleason’s grade using LDA is indicated by a black solid line. ROC analysis of a model

combining fusion transcripts, Nomogram and Gleason’s grade using LDA is indicated by a

dark gray dashed line. ROC analysis of a model combining LSR, fusion transcripts and

Gleason’s grade using LDA is indicated by a dotted line. ROC analysis of a model

combining LSR, fusion transcripts and Nomogram using LDA is indicated by a dash-

dotted line. ROC analysis of a model combining LSR, Nomogram and Gleason’s grade is

indicated by a light gray dashed line. Similar random splits of training and testing data sets

were performed as of (A).

Figure 9. Large LSRs of genome CNVs from leukocytes correlated with lower

PSA-free survival. Kaplan-Meier analysis on patients predicted by LSR based on CNV of

patients’ leukocytes as likely lethal (recurrent within 12 months of radical prostatectomy

and PSADT<4 months) versus likely non-recurrent (upper left). Similar survival analyses

were also performed on case segregations based on Gleason’s grades (upper middle),

Nomogram probability (upper right), the status of 8 fusion transcripts (lower left), or a

model by combining LSR, Nomogram and fusion transcript status using LDA (lower

middle), or a model by combining LSR, Nomogram, Gleason grade and fusion transcript

status using LDA (lower right). Number of samples analyzed and p values are indicated.

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods for assessing whether a subject having

prostate cancer is at an increased risk of relapse and/or at an increased risk of rapid

relapse. In certain embodiments, the present invention utilizes the size and number of the

CNVs detected in a sample from the subject to assess the risk of relapse. The present

invention further provides methods of treating subjects having an increased risk and/or

decreased risk of relapse or rapid relapse.

For clarity of description, and not by way of limitation, the detailed description of

the invention is divided into the following subsections:

(i) definitions;

(ii) methods of assessing risk of relapse or rapid relapse;

(iii) methods of treatment;
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(iv) detection methods; and

(v) kits.

5.1. DEFINITIONS

Unless defined otherwise, all technical and scientific terms used herein have the

meaning commonly understood by a person skilled in the art to which this invention

belongs. The following references provide one of skill with a general definition of many of

the terms used in this invention: Singleton et al., Dictionary of Microbiology and

Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology

(Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer

Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As

used herein, the following terms have the meanings ascribed to them below, unless

specified otherwise.

As used herein, the term “about” or “approximately” means within an acceptable

error range for the particular value as determined by one of ordinary skill in the art, which

will depend in part on how the value is measured or determined, i.e., the limitations of the

measurement system. For example, “about” can mean within 3 or more than 3 standard

deviations, per the practice in the art. Alternatively, “about” can mean a range of up to

20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1%

of a given value. Alternatively, particularly with respect to biological systems or

processes, the term can mean within an order of magnitude, preferably within 5-fold, and

more preferably within 2-fold, of a value.

The terms “prostate cancer patient” or “subject having prostate cancer,” as used

interchangeably herein, refer to a subject having or who has had a carcinoma of the

prostate. The use of the term “patient” does not suggest that the subject has received any

treatment for the cancer, but rather that the subject has at some point come to the attention

of the healthcare system. The patient/subject, prior to or contemporaneous with the

practicing of the invention, may be untreated for prostate cancer, may have received

treatment or are currently undergoing treatment, including but not limited to, surgical,

chemotherapeutic, anti-androgen or radiologic treatment.

The term “sample,” as used herein, includes, but is not limited to, cells in culture,

cell supernatants, cell lysates, serum, blood plasma, biological fluid (e.g., blood, plasma,

serum, stool, urine, lymphatic fluid, ascites, ductal lavage, saliva and cerebrospinal fluid)

and tissue samples. The source of the sample may be solid tissue (e.g., from a fresh,
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frozen, and/or preserved organ, tissue sample, biopsy or aspirate), blood or any blood

constituents, e.g., leukocytes, bodily fluids (such as, e.g., urine, lymph, cerebral spinal

fluid, amniotic fluid, peritoneal fluid or interstitial fluid), or cells from the individual,

including circulating cancer cells. In certain non-limiting embodiments, the sample is

obtained from a prostate tumor. In certain embodiments, the sample may be a “biopsy

sample” or “clinical sample,” which are samples derived from a subject. In certain

embodiments, the sample includes one or more prostate cancer cells from a subject. In

certain embodiments, the sample is a blood sample, e.g., buffy coat sample, from a

subject. In certain embodiments, the sample contains one or more leukocytes from a

subject.

The term “relapse,” as used herein, refers to a clinical course including one or

more of the following: (i) where the cancer had been removed or put into remission,

relapse refers to a recurrence of prostate cancer at the original site or occurrence at a new

site, including metastatic spread; (ii) where the cancer had not been removed or put into

remission, relapse refers to an extension of the cancer and/or metastatic spread; (iii)

whether or not the cancer had been treated, relapse refers to an advancement in the clinical

grade (for example, the Gleason grade), of the cancer; and/or a prostate specific antigen

(“PSA”) doubling time (PSADT) of 15 months.

The terms “rapid” or “relapse quickly,” as used interchangeably herein, means that

the relapse occurs within a period of 5 years. In certain embodiments, patients suffering a

rapid relapse can also manifest a PSADT of 3 months or less or 4 months or less.

In certain non-limiting embodiments, “increased risk” means that a relapse or a

rapid relapse occurs in more than about 50%, more than about 60%, more than about 70%,

more than about 80% or more than 90% of individuals that have a large size ratio (LSR)

greater than a particular threshold.

5.2 METHODS OF ASSESSING RISK OF RELAPSE OR RAPID RELAPSE

The present invention provides methods for determining whether a prostate cancer

patient has an increased and/or decreased risk for relapse or rapid relapse.

In certain embodiments, the present invention utilizes the size and number of the

CNVs to assess the likelihood that a prostate cancer will relapse or rapid relapse. For

example, and not by way of limitation, the present invention can utilize the percentage of

CNVs detected in a sample that are larger in size than a particular cut-off value to assess

the likelihood that a prostate cancer will relapse or rapid relapse. In certain embodiments,
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the percentage of CNVs detected in a sample that are larger in size than a particular cut-off

value can be represented by a large size ratio (see Figure 2A). “Large size ratio,” as used

herein, refers to the ratio of CNVs that have a size larger than a cut-off value to the total

number of CNVs detected in a sample of a subject. In certain embodiments, the large size

ratio (LSR) can be represented by the following formula: LSR = large size number / total

number of CNVs, where large size number is the number of CNVs that are larger in size

than a cut-off value.

In certain embodiments, the cut-off value for determining the LSR for a subject

can be about 20 kilobases (kb), about 25 kb, about 30 kb, about 31 kb, about 32 kb, about

33 kb, about 34 kb, about 35 kb, about 40 kb, about 45 kb, about 50 kb, about 55 kb, about

60 kb, about 65 kb, about 70 kb, about 75 kb, about 80 kb, about 85 kb, about 90 kb, about

95 kb, about 100 kb, about 150 kb, about 200 kb, about 250 kb, about 300 kb, about 350

kb, about 400 kb, about 450 kb, about 500 kb, about 501 kb or about 550 kb. In certain

embodiments, the cut-off value can be about 31,622 base pairs (bp) or about 501,187 bp.

In certain embodiments, in methods for determining that a prostate cancer patient

is at increased and/or decreased risk for relapse, the LSR can be calculated by dividing the

number of CNVs that are larger than about 25 kb or about 30 kb in size by the total

number of CNVs (e.g., LSR = (number of CNVs larger than about 25 kb or about 30 kb in

size) / total number of CNVs).

In certain embodiments, in methods for determining that a prostate cancer patient

is at an increased and/or decreased risk for rapid relapse, the LSR can be calculated by

dividing the number of CNVs that are larger than about 400 kb or about 500 kb in size by

the total number of CNVs (e.g., LSR = (number of CNVs larger than about 400 kb or

about 500 kb in size) / total number of CNVs).

In certain embodiments, CNVs across the genome can be determined and used to

determine the LSR. CNVs can be detected using methodology known in the art, including

hybridization to gene arrays and the analysis of the results of such hybridization using

software that determines copy number variation, as disclosed herein. In certain

embodiments, CNV size can be determined using the same genotyping analysis techniques

as described below and as are known in the art. In certain embodiments of the invention,

using the Partek software described below, segments with changes in copy number can be

obtained (including amplification and deletions), and those with the following criteria:

p<0.001, length >2 kb and >10 markers can be selected. The length of the selected CNVs

can also be determined.
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The presently disclosed subject matter provides methods for determining whether a

prostate cancer patient is at an increased risk for relapse or rapid relapse. In certain

embodiments, the method comprises determining the number and size of CNVs in a

sample and determining the large size ratio, where if the large size ratio exceeds a

particular threshold, the patient is deemed to be at an increased risk for relapse or rapid

relapse. In certain embodiments, the sample can be a blood sample from the patient, e.g.,

a buffy coat sample. In certain embodiments, the sample can comprise one or more

leukocytes from the patient.

In certain embodiments, a large size ratio of about 0.28 or greater is consistent

with a likelihood that the prostate cancer will relapse, e.g., when the cut-off value for

calculating the large size ratio is about 25 kb or about 30 kb. Accordingly, the present

invention provides for a method of determining that a prostate cancer patient is at an

increased risk for relapse comprising determining the number and size of CNVs in a

sample of the patient and determining the large size ratio, where if the large size ratio is

about 0.28 or greater, the patient is deemed to be at an increased risk for relapse.

In certain embodiments, a large size ratio of about 0.02 or greater is consistent with

a likelihood that the prostate cancer will rapidly relapse, e.g., when the cut-off value for

calculating the large size ratio is about 500 kb. In certain embodiments, a large size ratio

between about 0.02 and about 0.28 can indicate that the prostate cancer will rapidly

relapse. Accordingly, the present invention provides for a method of determining that a

prostate cancer patient is at an increased risk for relapse comprising determining the

number and size of CNVs in a sample of the patient and determining the large size ratio,

where if the large size ratio is about 0.02 or greater, the patient is deemed to be at an

increased risk for rapid relapse.

The presently disclosed subject matter further provides methods for determining

whether a prostate cancer patient is at a decreased risk for relapse or rapid relapse. In

certain embodiments, the method comprises determining the number and size of CNVs in

a sample and determining the large size ratio, where if the large size ratio is less than a

particular threshold, the patient is deemed to be at a decreased risk for relapse or rapid

relapse.

In certain embodiments, a large size ratio of less than about 0.28 is consistent with

a likelihood that the prostate cancer will be at a decreased risk of relapse, e.g., when the

cut-off value for calculating the large size ratio is about 25 kb or about 30 kb. In certain

embodiments, a large size ratio between about 0.02 and about 0.28 can indicate that the
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prostate cancer will be at a decreased risk of relapse. Accordingly, the present invention

provides for a method of determining that a prostate cancer patient is at a decreased risk

for relapse comprising determining the number and size of CNVs in a sample of the

patient and determining the large size ratio, where if the large size ratio is less than about

0.28, the patient is deemed to be at a decreased risk for relapse.

In certain embodiments, a large size ratio of less than about 0.02 is consistent with

a likelihood that the prostate cancer will be at a decreased risk of rapid relapse, e.g., when

the cut-off value for calculating the large size ratio is about 400 kb or about 500 kb.

Accordingly, the present invention provides for a method of determining that a prostate

cancer patient is at a decreased risk for relapse comprising determining the number and

size of CNVs in a sample of the patient and determining the large size ratio, where if the

large size ratio is less than about 0.02, the patient is deemed to be at a decreased risk for

rapid relapse.

In certain embodiments, the method can further include determining one or more

of the following: the Gleason grade of the prostate cancer, nomogram and fusion gene

status. For example, and not by way of limitation, the method of determining whether a

subject is at increased risk or decreased risk of relapse or rapid relapse of prostate cancer

can further comprise determining the Gleason grade of a prostate cancer sample from a

subject.

In certain embodiments, the method of determining whether a subject is at

increased risk or decreased risk of relapse or rapid relapse of prostate cancer can further

comprise generating a nomogram. In certain embodiments, the nomogram can be

determined using the prediction tool available at

http://www.mskcc.org/nomograms/prostate.

In certain embodiments, the method of determining whether a subject is at

increased risk or decreased risk of relapse or rapid relapse of prostate cancer can further

comprise determining whether a sample of the subject contains one or more fusion genes.

The term “fusion gene,” as used herein, refers to a nucleic acid or protein sequence, which

combines elements of the recited genes or their RNA transcripts in a manner not found in

the wild type/normal nucleic acid or protein sequences. For example, but not by way of

limitation, in a fusion gene in the form of genomic DNA, the relative positions of portions

of the genomic sequences of the recited genes is altered relative to the wild type/normal

sequence (for example, as reflected in the NCBI chromosomal positions or sequences set

forth herein). In a fusion gene in the form of mRNA, portions of RNA transcripts arising
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from both component genes are present (not necessarily in the same register as the wild-

type transcript and possibly including portions normally not present in the normal mature

transcript). In non-limiting embodiments, such a portion of genomic DNA or mRNA may

comprise at least about 10 consecutive nucleotides, or at least about 20 consecutive

nucleotides, or at least about 30 consecutive nucleotides, or at least 40 consecutive

nucleotides. In a fusion gene in the form of a protein, portions of amino acid sequences

arising from both component genes are present (not by way of limitation, at least about 5

consecutive amino acids or at least about 10 amino acids or at least about 20 amino acids

or at least about 30 amino acids). In certain embodiments, portions arising from both

genes, transcripts or proteins do not refer to sequences which may happen to be identical

in the wild type forms of both genes (that is to say, the portions are “unshared”). As such,

a fusion gene represents, generally speaking, the splicing together or fusion of genomic

elements not normally joined together. Non-limiting examples of such fusion genes

include TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1, LRRC59-FLJ60017,

TMEM135-CCDC67, KDM4B-AC011523.2, CCNH-C5orf30 and MAN2A1-FER.

The fusion gene TRMT11-GRIK2 refers to a fusion between the tRNA

methyltransferase 11 homolog (“TRMT11”) and glutamate receptor, ionotropic, kainate 2

(“GRIK2”) genes. The human TRMT11 gene is typically located on chromosome 6q11.1

and the human GRIK2 gene is typically located on chromosome 6q16.3. In certain

embodiments, the TRMT11 gene is the human gene having NCBI Gene ID No: 60487,

sequence chromosome 6; NC_000006.11 (126307576..126360422) and/or the GRIK2

gene is the human gene having NCBI Gene ID No:2898, sequence chromosome 6;

NC_000006.11 (101841584..102517958).

The fusion gene SLC45A2-AMACR refers to a fusion between the solute carrier

family 45, member 2 (“SLC45A2”) and alpha-methylacyl-CoA racemase (“AMACR”)

genes. The human SLC45A2 gene is typically located on human chromosome 5p13.2 and

the human AMACR gene is typically located on chromosome 5p13. In certain

embodiments, the SLC45A2 gene is the human gene having NCBI Gene ID No: 51151,

sequence chromosome 5; NC_000005.9 (33944721..33984780, complement) and/or the

AMACR gene is the human gene having NCBI Gene ID No:23600, sequence chromosome

5; NC_000005.9 (33987091..34008220, complement).

The fusion gene MTOR-TP53BP1 refers to a fusion between the mechanistic target

of rapamycin (“MTOR”) and tumor protein p53 binding protein 1 (“TP53BP1”) genes.

The human MTOR gene is typically located on chromosome 1p36.2 and the human
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TP53BP1 gene is typically located on chromosome 15q15 - q21. In certain embodiments,

the MTOR gene is the human gene having NCBI Gene ID No:2475, sequence

chromosome 1 NC_000001.10 (11166588..11322614, complement) and/or the

TP53BP1gene is the human gene having NCBI Gene ID No: 7158, sequence chromosome

15; NC_000015.9 (43695262..43802707, complement).

The fusion gene LRRC59-FLJ60017 refers to a fusion between the leucine rich

repeat containing 59 (“LRRC59”) gene and the “FLJ60017” nucleic acid. The human

LRRC59 gene is typically located on chromosome 17q21.33 and nucleic acid encoding

human FLJ60017 is typically located on chromosome 11q12.3. In certain embodiments,

the LRRC59 gene is the human gene having NCBI Gene ID No:55379, sequence

chromosome 17; NC_000017.10 (48458594..48474914, complement) and/or FLJ60017

has a nucleic acid sequence as set forth in GeneBank AK_296299.

The fusion gene TMEM135-CCDC67 refers to a fusion between the

transmembrane protein 135 (“TMEM135”) and coiled-coil domain containing 67

(“CCDC67”) genes. The human TMEM135 gene is typically located on chromosome

11q14.2 and the human CCDC67 gene is typically located on chromosome 11q21. In

certain embodiments, the TMEM135 gene is the human gene having NCBI Gene ID No:

65084, sequence chromosome 11; NC_000011.9 (86748886..87039876) and/or the

CCDC67 gene is the human gene having NCBI Gene ID No: 159989, sequence

chromosome 11; NC_000011.9 (93063156..93171636).

The fusion gene CCNH-C5orf30 refers to a fusion between the cyclin H

(“CCNH”) and chromosome 5 open reading frame 30 (“C5orf30”) genes. The human

CCNH gene is typically located on chromosome 5q13.3-q14 and the human C5orf30gene

is typically located on chromosome 5q21.1. In certain embodiments, the CCNH gene is

the human gene having NCBI Gene ID No: 902, sequence chromosome 5; NC_000005.9

(86687310..86708850, complement) and/or the C5orf30gene is the human gene having

NCBI Gene ID No: 90355, sequence chromosome 5; NC_000005.9

(102594442..102614361).

The fusion gene KDM4B-AC011523.2 refers to a fusion between lysine (K)-

specific demethylase 4B (“KDM4B”) and chromosomal region “AC011523.2.” The

human KDM4B gene is typically located on chromosome 19p13.3 and the human

AC011523.2 region is typically located on chromosome 19q13.4. In certain embodiments,

the KDM4B gene is the human gene having NCBI Gene ID NO: 23030, sequence

chromosome 19; NC_000019.9 (4969123..5153609).
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The fusion gene MAN2A1-FER refers to a fusion between mannosidase, alpha,

class 2A, member 1 (“MAN2A1”) and (fps/fes related) tyrosine kinase (“FER”). The

human MAN2A1 gene is typically located on chromosome 5q21.3 and the human FER

gene is typically located on chromosome 5q21. In certain embodiments, the

MAN2A1gene is the human gene having NCBI Gene ID NO: 4124, sequence

chromosome 5; NC_000005.9 (109025156..109203429) or NC_000005.9

(109034137..109035578); and/or the FER gene is the human gene having NCBI Gene ID

NO: 2241, sequence chromosome 5: NC_000005.9 (108083523..108523373).

In certain embodiments, to predict prostate cancer relapse by the combination of

the LSR, Nomogram, fusion gene status and Gleason grading, it is postulated that samples

from relapse or non-relapse groups follow normal distribution with different means but

same covariance matrix. For example, and not by limitation, based on training data, the

mean value for relapse samples is mu_relapse=(0.462 0.8714 0.571 7.107) for (LSR,

Nomogram, fusion, Gleason) and the mean for non-relapse samples is mu_non-

relapse=(0.318 0.907 0.214 7.214). In certain embodiments, the pooled covariance matrix

can be represented as follows:

sigma=

LSR nomogram fusion gleason

LSR 8.491034e-03 8.507772e-05 0.004008907 -0.012312703

nomo 8.507772e-05 1.307571e-02 -0.002607143 -0.063142857

fusion 4.008907e-03 -2.607143e-03 0.230357143 -0.008928571

gleason -1.231270e-02 -6.314286e-02 -0.008928571 0.525892857

In certain embodiments, for a testing sample x=[x1,x2,x3,x4]', its posterior

probability can be estimated by the following:

p(relapse|x)= p_0(x)*p(relapse) / (p_0(x)*p(relapse) + p_1(x)*p(non_relapse))

p(non-relapse|x)= p_1(x)*p(non_relapse) / (p_0(x)*p(relapse) + p_1(x)*p(non_relapse))

In certain embodiments, the cut-off value of the posterior probability can be set to

be a suitable value to increase or maximize the Youden index, which can be, for example

and without limitation and as embodied herein, about 0.544. In certain embodiments, a

testing sample with a posterior probability that is greater than about 0.5, greater than about

0.54 or greater than about 0.544 can be predicted to be relapse, or otherwise the testing

sample can be predicted to be non-relapse.

In certain embodiments, the techniques described above can be applied to classify

fast relapse versus non-fast relapse. For example, and not by limitation, the mean values
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for the fast relapse group is mu_fast-relapse=(0.031 0.828 0.667 7.267) for (LSR,

Nomogram, fusion, Gleason) and the mean for the non-fast relapse samples is mu_non-

fast relapse=(0.023 0.905 0.269 7.192). In certain embodiments, the pooled covariance

matrix can be represented as follows:

sigma=

LSR nomogram fusion gleason

LSR 0.0007088535 0.0001202635 0.0006518215 0.0003571929

nomo 0.0001202635 0.0125151282 0.0129487179 -0.0740256410

fusion 0.0006518215 0.0129487179 0.2166337936 -0.1028928337

gleason 0.0003571929 -0.0740256410 -0.1028928337 0.6915844839

In certain embodiments, the cut-off value of the posterior probability can be set to

about 0.396. For example, and not by way of limitation, a testing sample with a posterior

probability greater than about 0.35, greater than about 0.39 or greater than about 0.396 can

be predicted to be fast relapse, or otherwise the testing sample can be predicted to be non-

fast relapse.

5.3. METHODS OF TREATMENT

In certain embodiments, use of the present invention can inform a health care

practitioner how to better advise a prostate cancer patient on whether or not to undergo

more aggressive forms of therapy or whether watchful waiting would be an appropriate

recommendation. Accordingly, the present invention provides methods for treating

prostate cancer patients that are at an increased and/or decreased risk for relapse or rapid

relapse.

In certain embodiments, if it is determined that the patient is at an increased risk

for relapse or rapid relapse, as disclosed herein, a healthcare provider can take the further

step of recommending and/or performing a prophylactic and/or treatment regimen. For

example, and not by way of limitation, one or more of the following can be recommended

and/or performed: cryotherapy, radiation therapy, chemotherapy, hormone therapy,

biologic therapy, bisphosphonate therapy, high-intensity focused ultrasound, frequent

monitoring, frequent prostate-specific antigen (PSA) checks and radical prostatectomy.

In certain embodiments, if it is determined that the patient is not at an increased

risk and/or is at a decreased risk for relapse or rapid relapse, as disclosed herein, a

healthcare provider can recommend and/or perform one or more of the following: high-
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intensity focused ultrasound, watchful waiting, frequent monitoring, frequent PSA checks

and a biopsy.

In certain embodiments, one or more of the prophylactic and/or treatment

regimens, disclosed herein, can be performed at about 1 month, about 2 months, about 3

months, about 4 months, about 5 months, about 6 months, about 7 months, about 8

months, about 9 months, about 10 months, about 11 months, about 12 months, about 18

months, about 2 years, about 3 years, about 4 years or about 5 years following the

assessment of the risk of relapse or rapid relapse for the prostate cancer patient.

A non-limiting example of a biologic therapeutic is Sipuleucel-T. Bisphosphonate

therapy includes, but is not limited to, clodronate or zoledronate. Hormone therapy can

include one or more of orchiectomy and the administration of luteinizing hormone-

releasing hormone (LHRH) analogs and/or agonists, LHRH antagonists, anti-androgens or

androgen-suppressing drugs. Non-limiting examples of LHRH analogs and/or agonists

include leuprolide, goserelin and buserelin. Non-limiting examples of LHRH antagonists

include abarelix, cetrorelix, ganirelix and degarelix. Anti-androgen drugs include, but are

not limited to, flutamide, bicalutamide, enzalutamide and nilutamide. Non-limiting

examples of androgen-suppressing drugs include estrogens, ketoconazole and

aminoglutethimide. Frequent monitoring can include PSA blood tests, digital rectal

exams, ultrasounds and/or transrectal ultrasound-guided prostate biopsies at regular

intervals, e.g., at about 3 to about 6 month intervals, to monitor the status of the prostate

cancer. Radical prostatectomy is a surgical procedure that involves the removal of the

entire prostate gland and some surrounding tissue. Prostatectomies can be performed by

open surgery or it may be performed by laparoscopic surgery.

In certain embodiments, these prophylactic and/or treatment regimens can be used

to produce an anti-cancer effect in a subject. For example, and not by way of limitation,

the present invention provides methods of treating a prostate cancer patient to produce an

anti-cancer effect in the patient. An “anti-cancer effect” refers to one or more of a

reduction in aggregate cancer cell mass, a reduction in cancer cell growth rate, a reduction

in cancer progression, a reduction in cancer cell proliferation, a reduction in tumor mass, a

reduction in tumor volume, a reduction in tumor cell proliferation, a reduction in tumor

growth rate and/or a reduction in tumor metastasis. In certain embodiments, an anti-

cancer effect can refer to a complete response, a partial response, a stable disease (without

progression or relapse), a response with a later relapse or progression-free survival in a

patient diagnosed with cancer.
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5.4. DETECTION METHODS

The present invention provides methods for detecting the number and size of

CNVs across the genome of a subject. The present invention further provides methods for

detecting the presence of one or more fusion genes, disclosed herein, within a sample of a

subject.

5.4.1 COPY NUMBER VARIATION DETECTION

The present invention provides methods for determining the size and number of

CNVs within a sample of a subject. In certain embodiments, CNVs can be detected in one

or more samples of a subject. For example, and not by way of limitation, the sample can

be a sample of malignant tumor (or presumptively malignant tumor, where a diagnosis has

not yet been made) tissue. In certain embodiments, microdissection can be performed to

achieve a tumor purity of at least about 70% or at least about 80% or greater than 80%. In

certain embodiments, the sample can be tissue adjacent to a malignant tumor tissue (e.g.,

prostate tissue that is not identified as a tumor located in a prostate gland that contains a

tumor). In certain embodiments, a sample can be a tissue sample which is considered by a

skilled artisan to appear abnormal (microscopically and/or macroscopically) and is to be

tested to determine whether it is cancerous. In certain embodiments, a sample can be a

blood sample that contains at least some nucleated cells to serve as a source of DNA, e.g.,

a whole blood or buffy coat blood sample. In certain embodiments, the sample can

comprise one or more leukocytes from the subject. In certain embodiments, multiple

samples can be prepared for a single subject. For example, but not by way of limitation,

samples of tumor (i.e., malignant) tissue, tissue adjacent to a tumor tissue and blood can be

prepared and each of the samples can be analyzed for CNVs and compared.

In certain embodiments, DNA can be extracted from the sample, e.g., using a

Qiagen kit or other method known in the art. In certain embodiments, genotyping of the

extracted DNA can be performed to identify CNVs across the genome or a portion of the

genome. For example, and not by way of limitation, genotyping can be performed by

fragmenting the DNA using restriction enzymes (e.g., Sty1 and/or Nsp1), ligating the

DNA fragments to adaptors, amplifying the adaptor-DNA fragments using primers that

correspond to the adaptor sequences and, optionally, performing an additional

fragmentation step (e.g., by digestion with DNAseI). In certain embodiments, the

genotyping technique can further include labeling the amplified (or optionally further

fragmented) DNA product (e.g., with biotinylated nucleotides) and then hybridizing the

resulting labeled DNA to a plurality of test nucleic acid, e.g., DNA, molecules
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representative of the genome or a genome portion of interest under appropriate conditions

(for example, as described by the array manufacturer). Additional non-limiting examples

of genotyping techniques are disclosed in International Application No. WO 2013/106737,

the contents of which are hereby incorporated by reference in its entirety. In certain

embodiments, the plurality of test nucleic acid molecules can be provided in an array such

as, but not limited to, the Affymetrix Genomewide Human SNP Array 6.0 (Affymetrix,

CA). The terms “array,” “microarray” and “DNA chip” are used herein interchangeably to

refer to an array of distinct polynucleotides affixed to a substrate, such as glass, plastic,

paper, nylon or other type of membrane, filter, chip, bead, or any other suitable solid

support. The polynucleotides can be synthesized directly on the substrate, or synthesized

separate from the substrate and then affixed to the substrate. The arrays can be prepared

using known methods. In certain non-limiting embodiments, the one or more test nucleic

acid molecules set forth above may constitute at least 10 percent or at least 20 percent or at

least 30 percent or at least 40 percent or at least 50 percent or at least 60 percent or at least

70 percent or at least 80 percent of the species of polynucleotides represented on the

microarray.

In certain embodiments, the results from the array can then be interpreted to

determine the number or approximate number and/or size or approximate size of the

CNVs in the genome or portion thereof. For example, and not by way of limitation,

software such as Partek GenomeSuite 6.6 can be used.

5.4.2 FUSION GENE DETECTION

The present invention provides methods for detecting one or more fusion genes in

a sample of a subject. The fusion genes can be detected by detecting a fusion gene

manifested in a DNA molecule, an RNA molecule or a protein. In certain embodiments, a

fusion gene can be detected by determining the presence of a DNA molecule, an RNA

molecule or protein that is encoded by the fusion gene. For example, and not by way of

limitation, the presence of a fusion gene may be detected by determining the presence of

the protein encoded by the fusion gene. In certain embodiments, the fusion gene can be

detected in a sample of a subject.

In certain non-limiting embodiments, the fusion gene is detected by nucleic acid

hybridization analysis.

In certain non-limiting embodiments, the fusion gene is detected by fluorescent in

situ hybridization (FISH) analysis. FISH is a technique that can directly identify a specific

sequence of DNA or RNA in a cell or biological sample and enables visual determination
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of the presence and/or expression of a fusion gene in a tissue sample. In certain non-

limiting embodiments, where a fusion gene combines genes not typically present on the

same chromosome, FISH analysis may demonstrate probes binding to the same

chromosome. For example, and not by way of limitation, analysis may focus on the

chromosome where one gene normally resides and then hybridization analysis may be

performed to determine whether the other gene is present on that chromosome as well.

In certain non-limiting embodiments, the fusion gene is detected by DNA

hybridization, such as, but not limited to, Southern blot analysis.

In certain non-limiting embodiments, the fusion gene is detected by RNA

hybridization, such as, but not limited to, Northern blot analysis. In certain embodiments,

Northern blot analysis can be used for the detection of a fusion gene, where an isolated

RNA sample is run on a denaturing agarose gel, and transferred to a suitable support, such

as activated cellulose, nitrocellulose or glass or nylon membranes. Radiolabeled cDNA or

RNA is then hybridized to the preparation, washed and analyzed by autoradiography to

detect the presence of a fusion gene in the RNA sample.

In certain non-limiting embodiments, the fusion gene is detected by nucleic acid

sequencing analysis.

In certain non-limiting embodiments, one or more fusion genes can be detected by

probes present on a DNA array, chip or a microarray. For example, and not by way of

limitation, oligonucleotides corresponding to one or more fusion genes can be

immobilized on a chip which is then hybridized with labeled nucleic acids of a sample

obtained from a subject. Positive hybridization signal is obtained with the sample

containing the fusion gene transcripts. In certain non-limiting embodiments, the one or

more probes set forth above can constitute at least 10 percent or at least 20 percent or at

least 30 percent or at least 40 percent or at least 50 percent or at least 60 percent or at least

70 percent or at least 80 percent of the species of probes represented on the microarray.

In certain non-limiting embodiments, the fusion gene is detected by a method

comprising Reverse Transcription Polymerase Chain Reaction (“RT-PCR”).

In certain non-limiting embodiments, the fusion gene is detected by antibody

binding analysis such as, but not limited to, Western Blot analysis and

immunohistochemistry.
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5.5. KITS

The present invention further provides kits that can be used to practice the

invention. For example, and not by way of limitation, a kit of the present invention can

comprise an array that allows the analysis of CNVs across the whole genome. A non-

limiting embodiment of such an array is the Affymetrix SNP Array 6.0. In certain non-

limiting embodiments, the nucleic acid molecules for detecting CNVs may constitute at

least 10 percent or at least 20 percent or at least 30 percent or at least 40 percent or at least

50 percent or at least 60 percent or at least 70 percent or at least 80 percent of the species

of polynucleotides represented on the microarray.

In certain embodiments, a kit of the present invention can optionally comprise

software or internet access to software, in electronically readable form, that determines the

number and size of CNVs in the genes represented in the array. In certain embodiments,

the kit can optionally comprise software or internet access to software, in electronically

readable form, that determines whether CNVs in a DNA sample exceed or fall below a

size threshold and can further determine the large size ratio, set forth herein, which

indicates whether or not a prostate cancer patient is at an increased risk of relapse or an

increased risk of rapid relapse.

The present invention further provides kits for detecting one or more of the fusion

genes disclosed herein within a sample of a subject. Types of kits include, but are not

limited to, packaged fusion gene-specific probe and primer sets (e.g., TaqMan

probe/primer sets), arrays/microarrays or antibodies for detecting one or more fusion

genes. In certain embodiments, a kit of the present invention can include packaged fusion

gene-specific probe and primer sets (e.g., TaqMan probe/primer sets), arrays/microarrays

or antibodies for detecting one or more fusion genes selected from the group consisting of

TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1, LRRC59-FLJ60017,

TMEM135-CCDC67, KDM4B-AC011523.2, CCNH-C5orf30 and MAN2A1-FER. In

certain non-limiting embodiments, the one or more probes and/or primers for detecting

fusion genes indicated above can constitute at least 10 percent or at least 20 percent or at

least 30 percent or at least 40 percent or at least 50 percent or at least 60 percent or at least

70 percent or at least 80 percent of the species of probes and/or primers represented on the

microarray.

The following Example is offered to more fully illustrate the disclosure, but is not

to be construed as limiting the scope thereof.



6. EXAMPLE 1: ANALYSIS OF SIZE AND NUMBER OF CNVS IN

PROSTATE CANCER PATIENTS.

6.1 INTRODUCTION

Accurate prediction of prostate cancer clinical courses remains elusive. In this

study, we performed whole genome copy number analysis on leukocytes of 273 prostate

cancer patients using Affymetrix SNP 6.0 chip. Copy number variations (CNV) were

found across all chromosomes of the human genome. An average of 152 CNV fragments

per genome was identified in the leukocytes from prostate cancer patients. The size

distributions of CNV in the genome of leukocytes were highly correlative with prostate

cancer aggressiveness. A prostate cancer outcome prediction model was developed based

on large size ratio of CNV from the leukocyte genomes. This prediction model generated

an average prediction rate of 75.2%, with sensitivity of 77.3% and specificity of 69.0% for

prostate cancer recurrence. When combined with Nomogram and the status of fusion

transcripts, the average prediction rate was improved to 82.5% with sensitivity of 84.8%

and specificity of 78.2%. In addition, the leukocyte prediction model was 62.6% accurate

in predicting short prostate specific antigen doubling time. When combined with

Gleason’s grade, Nomogram and the status of fusion transcripts, the prediction model

generated a correct prediction rate of 77.5% with 73.7% sensitivity and 80.1% specificity.

To our knowledge, this is the first study showing that CNVs in leukocyte genomes are

predictive of clinical outcomes of a human malignancy.

Previous cytogenetic and other genome studies suggested a clear link between

genome abnormalities and prostate cancer (5-21). Recent analyses of genome copy

number of prostate cancer, benign tissues adjacent to cancer and blood samples from

prostate cancer patients suggested that genome deletion and amplification of certain

regions in prostate cancer samples were associated with poor clinical outcomes (14;22).

Whole genome and transcriptome sequencing revealed fusion transcripts in prostate cancer

predictive of prostate cancer recurrence (23). In this study, whole genome copy number

analyses on leukocytes from prostate cancer patients were performed. Significant copy

number variations (CNV) were identified in the genome of leukocytes of prostate cancer

patients. It was found that sizes of CNVs in leukocytes of prostate cancer samples were

highly correlative to prostate cancer recurrence. Prediction models were built to predict

prostate cancer outcomes based on the size of CNVs of the leukocytes.



6.2 MATERIALS AND METHODS

Tissue processing, DNA extraction, amplicon generation, labeling, hybridization,

washing and scanning of SNP 6.0 chips.

Prostate cancer samples were obtained from University of Pittsburgh Medical

Center Tissue Bank. These samples were collected from 1998-2012. Two hundred

seventy-three buffy coat samples from prostate cancer patients were analyzed. Among

these samples, 143 samples were followed at least 90 months, 35 patients were non-

recurrent for 90 months or more, 55 patients experiencing recurrence with short PSADT

(PSA doubling time <4 months), and 53 patients experiencing recurrence with long

PSADT (PSA doubling time >15 months) after radical prostatectomy (Table 3). The

Gleason’s scores of all prostate cancer samples were reassessed by UPMC pathologists

before the study. Clinical follow-up was conducted by office examination record, blood

PSA survey and radiographic follow-up. These follow-ups were carried out for up to a 15

year period after the patient had a radical prostatectomy. The protocol was approved by

“University of Pittsburgh Institutional Review Board”. Five hundred nanograms of

genomic DNA were digested with Sty1 and Nsp1 for 2 hours at 37o C. The digested DNA

was purified and ligated with primer/adaptors at 16o C for 12-16 hours. Amplicons were

generated by performing PCR using primers provided by the manufacturer (Affymetrix,

CA) on the ligation products using the following program: 94o C for 3 min, then 35 cycles

of 94o C 30 second, 60o C for 45 sec and 65o C for 1 minute. This was followed by extension

at 68o C for 7 min. The PCR products were then purified and digested with DNAseI for 35

min at 37o C to fragment the amplified DNA. The fragmented DNA was then labeled with

biotinylated nucleotides through terminal deoxynucleotide transferase for 4 hours at 37o C.

Two hundred fifty micrograms of fragmented DNA were hybridized with a pre-

equilibrated Affymetrix chip SNP 6.0 at 50o C for 18 hours. Procedures of washing and

scanning of SNP 6.0 chips followed the manuals provided by Affymetrix, Inc. Raw data

information of SNP6.0 from these samples was deposited in “Gene Expression Omnibus”

(GEO, accession number GSE70650).

Statistical analysis:

Copy number variation analysis: CEL files were analyzed with Genotyping

Console for quality control (QC) analysis. Samples with QC call above 80% and QC

contrast ratio above 0.4 were admitted into the analysis. To analyze CNV, CEL files were

imported into Partek GenomeSuite 6.6 to generate copy number from raw intensity. To

plot the histograms, deletion or amplification of genomes were analyzed by first limiting



to the regions with p-value less than 0.001. The selected regions were subsequently

filtered by limiting to the regions with at least 10 markers and 2 kb in size. The regions

were then mapped to known genes. The frequencies of amplification and deletions were

plotted to the genome corresponding to the gene locations (Figure 1A). For each gene,

Fisher’s exact test was applied to test the association between CNV involvement and

sample recurrence status. Then the minus log p-values were plotted on the Manhattan plot

with their corresponding gene chromosome locations to generate Figure 1B. Benjamini-

Hochberg (BH) method was applied to correct the p-values. The CNV-gene enriched

pathways were selected by Kolmogorov-Smirnov test on the gene adjusted p-values.

Pathway p-values were also corrected by BH method.

Machine learning methods to predict recurrent and fast-recurrent status: prediction

models for two types of clinical comparisons were constructed: (1) non-recurrent versus

recurrent; (2) non-fast recurrent (i.e., non-recurrent or recurrent but having prostate

specific antigen doubling time [PSADT]>15 months) versus fast-recurrent (recurrent

PSADT< 4 months). For each comparison, the models were constructed using Gleason

score (G), Nomogram score (N), fusion transcript status (F) or blood CNV information (L)

separately. For Gleason score discrimination, binary prediction was used (0 meaning

Gleason score < 7 and 1 meaning Gleason score > 7). For Nomogram score, the 7 year

survival probability obtained from http://www.mskcc.org/nomograms/prostate was used

(24). For fusion status, eight fusion transcripts (TRMT11-GRIK2, SLC45A2-AMACR,

MTOR-TP53BP1, LRRC59-FLJ60017, TMEM135-CCDC67, KDM4-AC011523.2,

MAN2A1-FER and CCNH-C5orf30) previously identified and validated in a multi-center

study (23) were applied. A binary fusion score was used (0 meaning none of the eight

fusions detected; 1 meaning one or more fusion transcripts detected).

For prediction using gene CNV of leukocytes, little predictive power from gene-

based association was found (Figure 1B). As a result, a large size ratio (LSR) model was

developed based on the assumption that untargeted CNV aberrations in blood played a

significant role in predisposing prostate tumors to aggressiveness. As shown in Figure 2A,

LSR was defined as the proportion of large size CNV identified in the blood genome of a

given patient, where large size was defined by threshold ^. In each two-fold cross-

validation, samples were randomly and equally split into two data sets. In the first dataset

treated as training data, the best ^ parameter in LSR model and the best cutoffs of

Nomogram and LSR scores were selected by maximizing the highest AUC (area under the

curve) and Youden index (i.e., sensitivity+specificity-1). The models were then applied to



the second dataset as testing data. The cross-validation was then repeated using the second

dataset as training data and the first dataset as test data. ROC curves were plotted by

varying the cutoffs in both the training and testing datasets. The corresponding overall

accuracy, sensitivity, specificity, Youden index and AUC were calculated to evaluate the

performance. The equal-splitting validation was repeated for 14 times and the top 2 and

bottom 2 splitting with the highest and lowest sum of AUCs were removed to avoid

accidentally extreme training/testing assignment. The remaining 10 cross-validation

results were finally averaged (Table 1 and Table 2). ROC and Kaplan-Meier survival

curves in Figure 3-6 are the representative results of the 10 predictions closest to the

averaged values.

To test whether combining multiple data information improves the prediction

result, we applied linear discriminant analysis (LDA) to combine two or more predictive

factors. All possible combinations were performed. Models using (1) L+N+F; (2) L+N+G;

(3) N+F+G; (4) L+F+G; (5) L+N+F+G are shown in Figure 3 and 5.

Kaplan-Meier curve analysis: For the survival evaluation (Figures 4 and 6), the

two-fold cross validation of “Training=>Testing” result was combined to compare the

performance of different methods, except for Gleason score that we used (<7 VS >7 as

cut-off for the whole samples). Kaplan-Meier curves were truncated at 90 months follow-

up. Log-rank test was performed to calculate the p-value between survival curves of two

predicted outcomes. To evaluate whether the survival difference for one model was

significantly better than the other, we define a test statistics U as the absolute difference of

the log-rank test statistics from the two models. Theoretically under the null hypothesis

(two models were non-discriminant), the test statistics U followed a distribution of

absolute difference of two independent chi-squared (degree of freedom = 1) distributions.

As a result, 10,000,000 times from the absolute difference of two independent chi-squared

distributions were sampled to form null distribution and evaluate the p-values.

6.3 RESULTS

Genome copy abnormalities are some of the hallmarks for prostate cancer.

However, little is known about the genome copy abnormalities in non-cancerous tissues

from prostate cancer patients. To analyze the regions of amplification and deletion in the

genome of leukocytes from prostate cancer patients, 273 buffy coats from prostate cancer

patients were analyzed for CNV across the entire genome using Affymetrix SNP6.0.

Using the cutoff criteria of size≥2 Kb, marker number ≥10 and p<0.001, a total of 41589

CNV fragments were identified, including 24213 segments of deletion and 17376 of



amplification, involving 17865 genes based on the Partek gene annotation (Figure 1A).

This translates to an average of about 152 CNVs per sample. The average size of CNV in

the genome of the leukocytes is about 147 Kb. On average, 256 genes were found to have

either copy number gain or loss per genome. Among the 273 blood samples, 143 blood

samples have more than 90 months of clinical follow-ups in terms of prostate cancer

recurrence. Interestingly, when categorizing the blood samples based on the status of

prostate cancer recurrence, CNV of leukocytes from patients who experienced recurrence

after radical prostatectomy had an average of >3.2 fold larger size of CNV versus CNV

from patients who had no recurrence for at least 90 months. Two-sided t test showed a

strong correlation between the size of CNV in leukocytes and prostate cancer recurrence

(p=2.2 x 10-16), suggesting that the size of germ line CNV may play a significant role in

predisposing prostate cancer to aggressive clinical courses. However, no specific

(FDR=0.05) gene involved in CNV of genome fragment reaches the threshold that

differentiates recurrent prostate cancer versus those of non-recurrent (Figure 1B).

Together, the results indicate that the gene-based prediction model is unlikely to succeed

in the leukocyte CNV analysis but size distribution of CNVs can be predictive.

To examine whether germ line CNV is predictive of recurrence of prostate cancer,

an algorithm utilizing ratios of the number of large size fragments was developed. As

illustrated in Figure 2A, for each sample, large size ratio (LSR) is defined as the ratio of

CNV fragments whose sizes are greater than a size cutoff (δ) over the total number of

CNV fragments. For example, 3 of the 7 detected CNVs in Figure 2A are found “large

size fragments” (size ≥ ^) and the LSR of this patient is calculated as 3/7=0.43. In Figure

2B, the distribution of LSR from patients who experienced prostate cancer recurrence

showed significantly higher values than those who did not experience recurrence.

Similarly, the distribution of LSR from patients with fast recurrence (PSADT< 4 months)

was significantly higher than those from non-fast recurrent patients (non-recurrent or

recurrent but having PSADT> 15 months, Figure 2C). In the LSR model, the size

threshold ^ is determined by maximizing the AUC. When ^ values were optimized (Figure

7, δ=104.5=31622 bp for recurrent prediction model and 1B selected δ=105.7=501187 bp

for fast recurrent prediction), it predicts prostate cancer recurrence with accuracy of

77.6%, with sensitivity of 80.4% and specificity of 68.6%, while fast recurrence with

accuracy of 62.4%, with sensitivity of 72.9% and specificity of 54.1%.

To validate this model, 143 blood samples (Table 3) from prostate cancer patients

were randomly split into a training set (72 samples) and a testing set (71 samples). The



optimized large-size cutoff δ and LSR-cutoff were obtained from the training analysis by

maximizing the Youden index. The parameters were then applied to the testing data set to

assess the prediction accuracy. The validation was then repeated 14 times and the best 2

and worst 2 were removed to avoid extreme randomization. The remaining 10 results from

these training and testing analyses were averaged (Table 1). As shown in Figure 3A

(representative analyses in Table 4) and Table 1, the training accuracy of LSR model in

predicting prostate cancer recurrence reaches 76.5%, with 77.8% sensitivity and 72.4%

specificity. When the parameters were applied to the testing set, the prediction accuracy

reaches 73.9%, with 76.8% sensitivity and 65.6% specificity. These prediction rates are

better than those of Nomogram (66.0% accuracy for training and 61.3% for testing, Table

1), and are significantly higher than those of Gleason grade’s with single cutoff (40.3% for

training and 39.4% for testing; p=8.6x10-3 for training and p=5.8x10-3 for testing by ROC

comparison, see Table 1 and Table 5).

To examine whether combination of different modalities will improve the

prediction model, blood LSR, Nomogram, Gleason’s grade and the status of 8 fusion

transcripts (TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1, LRRC59-

FLJ60017, TMEM135 –CCDC67, KDM4-AC011523.2, MAN2A1-FER and CCNH-

C5orf30) (23) in the prostate cancer samples were combined through linear discriminant

analysis (LDA) to train the prediction model in the training set. Such model generated a

prediction accuracy of 87.9%, with 88.8% sensitivity and 85.4% specificity for prostate

cancer recurrence in the training set, and accuracy of 75.7%, with 81.7% sensitivity and

64.0% specificity in the testing set (Figure 3B and Table 1). Interestingly, the combination

of LSR, Nomogram and the status of fusion transcripts appears to produce the best

prediction results: 86.4% accuracy in the training set and 78.6% accuracy in the testing set.

These prediction rates appear significantly better than those generated from any single

modality (Table 1). To evaluate the contribution of each of these modalities to the

combination model, subtraction of one of each modality at a time was made on the model

to evaluate their impacts respectively. As shown in Figure 3B and Table 1, subtraction of

LSR modality appeared to have the most significant impact on prediction of prostate

cancer recurrence: The prediction accuracy rates drop from 87.9% to 75.1% (ROC

p=0.044, see Table 5) in the training sets and from 75.7% to 64.0% (ROC p=0.037) in the

testing sets. This was followed by fusion genes (p-value between the two ROC curves was

0.109 for training and 0.159 for testing). On the other hand, subtraction of Nomogram or



Gleason grade had no appreciable impact on the prediction performance of the model

(Table 1, Figure 3 and Table 5).

To examine the prediction performance of LSR score on PSA-free survival of

prostate cancer patients, Kaplan-Meier analyses were performed on 143 patients who had

definitive clinical information (Table 3). Recurrence status for testing samples were

predicted by the model trained from the training set, and the prediction model of training

samples was trained from testing set. The merged two-fold cross-validation prediction

results were used to divide the 143 patients into predicted recurrent group and non-

recurrent group. As shown in Figure 4, when patients were predicted by LSR as high risk

for prostate cancer recurrence, only 12.1% of the patients survived for 90 months without

recurrence, while over 52.3% patients with LSR model predicted to be likely non-

recurrent survived 90 months without any sign of recurrent prostate cancer (average p=9.9

x 10-5 by log-rank test, Figure 4 and Table 6). In contrast, Gleason score failed to produce

statistically significant different results for recurrent and non-recurrent groups (p=0.113 by

log-rank test). Nomogram, however, generated statistically significant better clinical

outcomes (33.9% versus 18.4% survival rate and p=0.0038 for log-rank test) when patients

were segregated based on predicted recurrent versus non-recurrent by Nomogram. When

fusion transcripts, leukocyte genome LSR and Nomogram were combined, it improved the

outcomes of prostate cancer prediction to 58.1% PSA-free survival if they were predicted

to be non-recurrent by the model versus 16.9% if they were predicted as likely recurrent

by the combined model (p=2.9x10-6 for the two survival curves). This combined-modality

model significantly outperforms any single modality prediction model (p=6.6x10-3 versus

LSR, p=1.8x10-5 versus Gleason, p=3.5x10-4 versus Nomogram, p=0.017 versus fusion

transcripts, see Table 7). When Gleason grading was added to model, it did not improve

the accuracy of prediction, but improved the survival curves.

Prostate cancer related death is closely associated with rising velocity of recurrent

seral PSA. Short PSADT (<4 months) had been used as a surrogate for prostate cancer

related death for the last 15 years (25; 26). To examine whether LSR in the genome of

leukocytes is also predictive of short PSADT, blood samples (Table 3) were randomly

split into training (65 samples) and testing (64 samples) sets. Similar processes were

performed on these samples as described in recurrence prediction. As shown in Table 2,

the LSR model in the training and testing data sets yielded an accuracy of prediction of

PSADT=<4 months as 67.7% and 57.5%, respectively. The ROC curve of LSR model

versus the diagonal line (random guess) has p-value=0.016 for the training set and 0.017



for the testing set (Figure 5, Table 2 and Table 8). The prediction based on Gleason scores

yielded 42.3% accuracy for training set, and 44.5% for the testing data set. On the other

hand, Nomogram generated a prediction accuracy of 67.8% and ROC p-value of 0.0082 in

the training set and 64.5% accuracy and 0.0014 ROC p-value in the testing set. The status

of fusion transcripts in the prostate cancer samples produced an accuracy of 68.8% and

68.4% in training and testing data sets, respectively. These 4 methods did not appear to be

significantly better than one another when pairwise proportion tests were performed.

However, when all 4 methods were combined, it yielded an accuracy of 83.0% (ROC

p=5.3 x 10-9) for the training set and 72.0% (ROC p=1.3x10-4) for the testing set. These

results were better than any single prediction modality in terms of accuracy, AUC and

Youden Index values (Table 2). To investigate the impact of each of these modalities on

the prediction model, each modality was individually subtracted from the combined

prediction model. The prediction results showed a range of 72.8-82.5% accuracy in the

training data set and 65.0-73.6% accuracy in the testing data set, when one modality was

subtracted. Interestingly, when either blood LSR or cancer fusion transcript status was

subtracted, the combined models yielded no significantly better predictions than any single

modality prediction except Gleason’s (Table 9), suggesting that blood LSR and fusion

transcript status were the most significant contributors in the combined prediction model.

To analyze the impact of short PSADT prediction on prostate cancer PSA-free

survivals, Kaplan-Meier analyses were performed on samples segregated based on the

PSADT prediction by leukocyte genome LSR. As shown in Figure 6 and Table 10, when

samples predicted by blood LSR to have PSADT<4 months, the PSA-free survival rate

was 17.1% at 90th-month after radical prostatectomy, while the survival rate improved to

41.5% for those predicted to have PSADT>15 months or non-recurrent (log-rank test

p=0.0039, see Figure 6 and Table 10). In contrast, survival curves predicted by Gleason

score ended up with similar survival rate at 90-month, and the p-value between two curves

was 0.0816 by log-rank test. Nomogram had the PSA-free survival rate of 21.4% when

patients were predicted to have PSADT<4 months. This survival rate was 31.5% when

patients were predicted to be non-recurrent (p=0.0021 by log-rank test). However, when

the model combining Gleason, Nomogram, fusion transcripts and blood LSR was applied,

the PSA-free survival rate was only 7.9% when patients were predicted to have PSADT<4

months, while the survival rate was 52.1% when the patients were predicted to have

PSADT>4 months or non-recurrent (p=1.6x10-7). The model combining 4 modalities

significantly outperformed the prediction models based on Gleason grade (p=1.5x10-6) or



Nomogram (p=3.0x10-5) or LSR (p=1.9x10-5) or fusion transcripts (p=0.0018) alone

(Table 11). These analyses clearly indicate that the sizes of copy number variation of

human leukocytes are correlative with clinical behavior of prostate cancer. The

combination of the genome CNV of leukocytes with clinical information of prostate

cancer patients would yield much improved prediction models for prostate cancer

behavior.

6.4. DISCUSSION

Extensive presence of CNV is one of the important features of human

malignancies. CNV in normal tissues of healthy individuals was also well documented

(14; 27; 28). Since CNV analysis is largely insensitive to small contamination, it may

require more than 25% contamination to detect an alteration of copy number in the

genome. Small contamination of the blood stream by prostate cancer cells is generally

undetected. The CNVs detected from the buffy coats in our study probably represent the

genome CNVs from leukocytes. Our studies suggest that the sizes of CNV from

leukocytes of prostate cancer patients are highly correlative with the clinical outcomes of

prostate cancer. These CNVs spreads across all the chromosomes. Most of these CNVs

overlap with the gene coding sequences of the genome. Interestingly, neither specific

CNV fragment nor gene involved by these CNVs is significantly associated with the

outcome of prostate cancer, suggesting that the impact of CNVs on prostate cancer is of

collective nature. However, pathway analysis on genes that were involved in leukocyte

genome CNV revealed enrichment of olfactory signaling pathways in recurrent-high risk

patients from REACTOME (adjusted p=5.0x10-10 using Kolmogorov-Smirnov test) and

KEGG (adjusted p=6.9x10-10) databases. The significance of leukocyte genome CNV

enriched in this pathway is not clear. A recent study also suggests that higher copy number

of mitochondria DNA is associated with the risk of prostate cancer. But it is unclear

whether mitochondria DNA copy number is correlated with prostate cancer metastasis

(29). There is no clear link of leukocyte CNV with the severity of infiltrating lymphocytes

in the prostate cancer samples.

The widespread and sporadic nature of these CNVs indicates that the leukocyte

CNVs are of germline origin. As a result, our study implies that high numbers of large size

germline CNVs predispose prostate cancer to aggressive behavior. These large size CNVs

frequently overlap with multiple genes. The larger the size of the CNV is, the higher the

number of genes could be impacted, and thus more metabolic and signaling pathways

would be hit. Interestingly, one of the most frequent genes detected in large size CNVs is



UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17). This gene encodes

an enzyme responsible for transferring of glucuronic acid from uridine

diphosphoglucuronic acid to a diverse array of substrates including steroid hormones and

lipid-soluble drugs. UGT2B17 is essential for steroid metabolism. Genome deletion of

UGT2B17 is associated with higher testosterone level (30). As a result, germline CNV of

UGT2B17 may have an impact on sex hormone metabolism, and thus affects the clinical

course of prostate cancer. The expression levels of genes involved in CNV may be altered

even in normal cells due to higher or lower copy number of the transcription units. Such

subtle alterations could be exacerbated when cells become malignant because of the loss

of the off-set mechanism. Indeed, higher numbers and larger sizes of CNVs and bigger

CNV burden in prostate cancer samples are correlative with prostate cancer aggressiveness

(14; 31). As a result, germline CNV is possibly a pre-condition and down-stream

mechanism leading to aggressive behavior of prostate cancer.

Prostate cancer is highly heterogeneous with various clinical outcomes. Most

prostate cancers do not develop into life-threatening disease. Only a small fraction of

prostate cancers are lethal and require aggressive treatment. When prostate cancer samples

were segregated as likely lethal (recurrence occurred <12 months after radical

prostatectomy and PSDAT<4 months) versus those with no recurrence at all for 90

months, leukocyte LSR correctly predicted 78.3% accuracy with 73.9% sensitivity and

82.9% specificity for training and 66.9% accuracy with 59.4% sensitivity and 73.9%

specificity for testing (Table 12-16; Figures 8 and 9). The model combining leukocyte

LSR with Nomogram and fusion transcript status has an accuracy of 95.7% with 96.6%

sensitivity and 94.7% specificity for training and an accuracy of 82.9% with 79.6%

sensitivity and 85.5% specificity for testing. The multi-modality model outperformed all

model based on single criteria in judging the lethality of prostate cancer.

Gleason’s grading has been the mainstay in judging the potential behavior of

prostate cancer for many years. The accuracy of Gleason’s prediction is generally good

when Gleason’s grade is high (8 and above). However, the prediction rates for prostate

cancers with mid-range scores such as 7, are much less accurate. Furthermore, final

Gleason’s grades cannot be determined until the entire prostate gland is examined. Thus,

the determination of treatment modality of prostate cancer could be problematic. Even

though genomic or epigenomic analyses of cancer cells from the blood (32) or from

prostate (14; 33; 34) can offer significant insight into the prognosis of prostate cancer,

leukocyte CNV represents the most non-invasive and least laborious approach to assess



the metastatic potential of cancer. Conceivably, leukocyte CNV analysis offers an

attractive alternative model in predicting prostate cancer clinical outcomes. There are

several salient potentials for clinical application using the leukocyte CNV tests: For a

patient being diagnosed of prostate cancer, CNV analysis done on the blood samples from

the patient would eliminate the need for additional invasive procedure to decide a

treatment mode. For a patient already having a radical prostatectomy, the CNV analysis on

the blood sample, combined with information of fusion transcript status and Nomogram,

may help to decide whether additional treatment is warranted to prevent prostate cancer

recurrence. Since the leukocyte genome CNV test required no prostate cancer sample, it

would be extremely useful if a patient has only a limited number of prostate cancer cells

and Gleason’s grading or other pathological features cannot be determined. The only

limitation of leukocyte CNV test is its slightly higher cost. In addition, the leukocyte CNV

test is highly complement to clinical prediction parameters such as Gleason’s grade and

Nomogram, and it enhances the prediction precision of these clinical parameters. As a

result, the CNV analysis on the genome of leukocytes of prostate cancer patients may hold

promise to become an important way to predict the behavior of prostate cancer.
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Table 1: Prediction of prostate cancer recurrence based on leukocyte LSR, Gleason, Nomogram and 

fusion transcript status 

Model    Accuracy  Sensitivity  Specificity  Youden index  AUC  ROC p‐value  

Equal split training data (n=72) 
LSR    0.765    0.778    0.724    0.502    0.779  2.15 x 10

‐5
 

Nomogram  0.660    0.675    0.612    0.286    0.630  3.67 x 10
‐2

 
Gleason  0.403    0.296    0.747    0.043    0.538  3.28 x 10

‐1
 

Fusion    0.642    0.537    0.897    0.434    0.717  5.84 x 10
‐4

 
L+N+F    0.864    0.856    0.885    0.742    0.917  2.12 x 10

‐1 3
 

L+N+G    0.768    0.767    0.771    0.538    0.803  1.69 x 10
‐6

 
N+F+G    0.751    0.698    0.870    0.568    0.799  3.05 x 10

‐5
 

L+F+G    0.863    0.867    0.850    0.717    0.910  3.33 x 10
‐1 2

 
L+N+F+G  0.879    0.888    0.854    0.742    0.923  3.75 x 10

‐1 4
 

 
Equal split testing data (n=71) 

LSR    0.739    0.768    0.656    0.423    0.760  1.38 x 10
‐4

 
Nomogram  0.613    0.653    0.494    0.147    0.589  1.93 x 10

‐1
 

Gleason  0.394    0.277    0.739    0.016    0.513  3.52 x 10
‐1

 
Fusion    0.647    0.530    0.892    0.422    0.711  9.11 x 10 ‐4  
L+N+F    0.786    0.839    0.678    0.517    0.879  4.19 x 10 ‐9  
L+N+G    0.692    0.719    0.611    0.330    0.722  1.77 x 10 ‐3  
N+F+G    0.640    0.641    0.650    0.292    0.709  8.82 x 10 ‐3  
L+F+G    0.760    0.812    0.660    0.472    0.856   1.61 x 10 ‐7  
L+N+F+G  0.757    0.817    0.640    0.457    0.853  3.94 x 10 ‐7  

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade.  
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
The results represent the average of the analyses on 10 random equal splits of training and testing 
results.  
 
   



Table 2: Prediction of prostate cancer recurrent PSADT<4 months based on leukocyte LSR, Gleason, 
Nomogram and fusion transcript status 

Model    Accuracy  Sensitivity  Specificity  Youden index  AUC  ROC p‐value 

Equal split training data (n=65) 
LSR    0.655    0.739    0.592    0.331    0.662  1.63 x 10

‐2
 

Nomogram  0.678    0.593    0.743    0.336    0.676  8.19 x 10
‐3

 
Gleason  0.423    0.300    0.743    0.043    0.550  4.63 x 10

‐1
 

Fusion    0.688    0.626    0.725    0.351    0.676  1.89 x 10
‐2

 
L+N+F    0.825    0.788    0.850    0.638    0.860  8.00 x 10

‐9
 

L+N+G    0.728    0.779    0.689    0.468    0.743  1.97 x 10 ‐4  
N+F+G    0.791    0.710    0.845    0.555    0.794  2.55 x 10 ‐4  
L+F+G    0.809    0.822    0.798    0.620    0.839  5.34 x 10 ‐7  
L+N+F+G  0.830    0.806    0.846    0.652    0.866  5.29 x 10 ‐9  
 

Equal split testing data (n=64) 
LSR    0.595    0.636    0.564    0.200    0.660  1.67 x 10

‐2
 

Nomogram  0.645    0.611    0.670    0.281    0.707  1.39 x 10
‐3

 
Gleason  0.445    0.324    0.754    0.078    0.532  5.68 x 10

‐1
 

Fusion    0.684    0.613    0.731    0.344    0.672  1.96 x 10
‐2

 
L+N+F    0.736    0.669    0.782    0.451    0.799  4.84 x 10

‐5
 

L+N+G    0.650    0.678    0.630    0.308    0.715  1.45 x 10
‐3

 
N+F+G    0.699    0.598    0.764    0.362    0.764  5.97 x 10

‐4
 

L+F+G    0.698    0.668    0.723    0.390    0.768   4.79 x 10
‐4

 
L+N+F+G  0.720    0.667    0.756    0.423    0.788  1.26 x 10

‐4
 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade.  
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
The results represent the average of the analyses on 10 random equal splits of training and testing 
results.  
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Table 4: Prediction of prostate cancer recurrence based on leukocyte LSR, Gleason, Nomogram and 
fusion transcript status (the representative result for Figure 3) 

Model    Accuracy  Sensitivity  Specificity  Youden index  AUC  ROC p‐value   

Equal split training data (n=72)  
LSR    0.778    0.800    0.706    0.506    0.775  1.52 x 10

‐4
 

Nomogram  0.681    0.691    0.647    0.338    0.619  1.43 x 10
‐1

 
Gleason  0.347    0.218    0.765    ‐0.017    0.496  9.54 x 10

‐1
 

Fusion    0.651    0.586    0.786    0.372    0.686  1.53 x 10
‐2

 
L+N+F    0.837    0.793    0.929    0.722    0.897  2.60 x 10

‐9
 

L+N+G    0.639    0.545    0.941    0.487    0.778  7.34 x 10 ‐5  
N+F+G    0.721    0.586    1.000    0.586    0.787  1.39 x 10 ‐4  
L+F+G    0.814    0.759    0.929    0.687    0.897  5.44 x 10 ‐9  
L+N+F+G  0.860    0.897    0.786    0.682    0.906  1.99 x 10 ‐9  
 

Equal split testing data (n=71) 
LSR    0.761    0.792    0.667    0.459    0.768  8.10 x 10

‐5
 

Nomogram  0.648    0.736    0.389    0.125    0.596  2.06 x 10
‐1

 
Gleason  0.451    0.358    0.722    0.081    0.558  4.33 x 10

‐1
 

Fusion    0.638    0.485    1.000    0.485    0.742  1.68 x 10
‐6

 
L+N+F    0.872    0.909    0.786    0.695    0.898  1.13 x 10

‐9
 

L+N+G    0.634    0.604    0.722    0.326    0.761  3.68 x 10
‐4

 
N+F+G    0.596    0.424    1.000    0.424    0.714  5.89 x 10

‐3
 

L+F+G    0.745    0.727    0.786    0.513    0.890  2.68 x 10
‐9  

L+N+F+G  0.851    0.909    0.714    0.623    0.892  1.34 x 10
‐9

 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

 



Table 5: Pairwise ROC p‐value for prostate cancer recurrent status prediction (the geometric mean of 

the 10 cross ‐validations) 

Training => Training 

G 

‐1 
‐2 
‐3 
‐1 
‐1 
‐1 
‐1 
‐1 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

 

Training => Testing 

G 

‐1 
‐1 
‐3 
‐1 
‐1 
‐1 
‐1 
‐2 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 



Table 6: Survival p‐values for the predicted prostate cancer recurrent and non ‐recurrent groups (the 

geometric mean of the 10 cross ‐validations). 

Model            Survival p ‐value between two groups 

LSR            9.85 x 10
‐5

 
Nomogram          3.83 x 10

‐3
 

Gleason          1.13 x 10
‐1

 
Fusion            6.75 x 10

‐5
 

LSR + Nomogram + Fusion      2.88 x 10
‐6

 
LSR + Nomogram + Gleason      2.67 x 10

‐4
 

Nomogram + Fusion + Gleason      3.42 x 10
‐4

 
LSR + Fusion + Gleason        4.75 x 10

‐5
 

LSR + Nomogram + Fusion + Gleason    9.40 x 10
‐5

 

 

 

   



Table 7: Pairwise survival p‐value for prostate cancer recurrent status prediction (the geometric 

mean of the 10 cross ‐validations) 

G 

‐2 
‐2 
‐3 
‐2 
‐2 
‐2 
‐2 
‐3 

L‐L R; N‐Nomogram; F ‐ us on transcr pt status;  ‐ eason gra e; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
   



Table 8: Prediction of prostate cancer recurrent PSADT<4 months based on leukocyte LSR, Gleason, 
Nomogram and fusion transcript status (the representative result for Figure 5). 

Model    Accuracy  Sensitivity  Specificity  Youden index  AUC  ROC p‐value 

Equal split training data (n=65) 
LSR    0.662    0.500    0.784    0.284    0.674  1.33 x 10

‐2
 

Nomogram  0.677    0.536    0.784    0.319    0.668  1.65 x 10
‐2

 
Gleason  0.415    0.292    0.765    0.056    0.555  4.69 x 10

‐1
 

Fusion    0.667    0.579    0.731    0.310    0.655  4.00 x 10
‐2

 
L+N+F    0.822    0.842    0.808    0.650    0.858  1.26 x 10

‐7
 

L+N+G    0.754    0.750    0.757    0.507    0.766  4.86 x 10 ‐5  
N+F+G    0.800    0.632    0.923    0.555    0.764  1.99 x 10 ‐3  
L+F+G    0.867    0.842    0.885    0.727    0.857  6.91 x 10 ‐7  

L+N+F+G  0.800    0.842    0.769    0.611    0.864  2.39 x 10 ‐8  
 

Equal split testing data (n=64) 
LSR    0.547    0.259    0.757    0.016    0.650  3.49 x 10

‐2
 

Nomogram  0.672    0.593    0.730    0.322    0.716  7.66 x 10
‐4

 
Gleason  0.453    0.333    0.737    0.070    0.530  6.74 x 10

‐1
 

Fusion    0.707    0.667    0.731    0.397    0.699  1.37 x 10
‐2

 
L+N+F    0.707    0.733    0.692    0.426    0.782  3.16 x 10

‐4
 

L+N+G    0.656    0.593    0.703    0.295    0.727  6.57 x 10
‐4

 
N+F+G    0.707    0.533    0.808    0.341    0.801  8.37 x 10

‐5
 

L+F+G    0.610    0.400    0.731    0.131    0.717  9.56 x 10
‐3  

L+N+F+G  0.707    0.733    0.692    0.426    0.785  2.52 x 10
‐4

 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

   



Table 9: Pairwise ROC p‐value for prostate cancer fast ‐recurrent status prediction (the geometric 

mean of the 10 cross ‐validations) 

Training => Training 

 

1 
1 
2 
1 
1 
1 
1 
1 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

Training => Testing 

 

1 
1 
2 
1 
1 
1 
1 
1 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

   



Table 10: Survival p‐values for the predicted prostate cancer fast ‐recurrent and non ‐fast ‐recurrent 
groups (the geometric mean of the 10 cross ‐validations). 

Model            Survival p ‐value between two groups 

LSR            3.94 x 10
‐3

 
Nomogram          2.14 x 10

‐3
 

Gleason          8.16 x 10
‐2

 
Fusion            3.50 x 10

‐5
 

LSR + Nomogram + Fusion      1.48 x 10
‐6

 
LSR + Nomogram + Gleason      5.24 x 10

‐5
 

Nomogram + Fusion + Gleason      2.83 x 10
‐6

 
LSR + Fusion + Gleason        3.43 x 10

‐6
 

LSR + Nomogram + Fusion + Gleason    1.55 x 10
‐7

 

 

 

Table 11: Pairwise survival p‐value for prostate cancer fast ‐recurrent status prediction (the 

geometric mean of the 10 cross ‐validations) 

 

3 

3 

4 

2 

4 

3 

3 

3 

‐ ;  ‐ omogram;  ‐ us on  ranscr p  s a us;  ‐ eason gra e ; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

   



Table 12: Prediction of lethal prostate cancer recurrent (PSADT<4 months and relapse time <12 
months) VS non‐recurrence based on leukocyte LSR, Gleason, Nomogram and fusion transcript 
status (the average result). 

Model    Accuracy  Sensitivity  Specificity  Youden index  AUC  ROC p‐value 

Equal split training data (n=35) 
LSR    0.783    0.739    0.829    0.568    0.818  7.88 x 10

‐5
 

Nomogram  0.749    0.694    0.806    0.500    0.778  3.45 x 10
‐4

 
Gleason  0.617    0.500    0.741    0.241    0.640  8.75 x 10

‐2
 

Fusion    0.727    0.553    0.889    0.442    0.721  1.07 x 10
‐2

 
L+N+F    0.957    0.966    0.947    0.913    0.979  1.25 x 10 ‐2 1  
L+N+G    0.891    0.917    0.865    0.781    0.914  4.42 x 10 ‐1 0  
N+F+G    0.840    0.836    0.848    0.684    0.862  1.21 x 10 ‐5  
L+F+G    0.938    0.992    0.887    0.880    0.968  8.88 x 10 ‐18 

L+N+F+G  0.977    0.983    0.971    0.954    0.991  7.24 x 10 ‐2 6  
 

Equal split testing data (n=35) 
LSR    0.669    0.594    0.739    0.333    0.705  2.49 x 10

‐2
 

Nomogram  0.686    0.676    0.694    0.371    0.788  1.12 x 10
‐4

 
Gleason  0.640    0.529    0.744    0.274    0.659  5.11 x 10

‐2
 

Fusion    0.768    0.594    0.900    0.493    0.747  4.19 x 10
‐3

 
L+N+F    0.829    0.796    0.855    0.651    0.921  2.80 x 10

‐1 1
 

L+N+G    0.743    0.741    0.744    0.486    0.800  2.98 x 10
‐4

 
N+F+G    0.755    0.778    0.733    0.510    0.847  2.06 x 10

‐5
 

L+F+G    0.773    0.758    0.787    0.545    0.903  7.01 x 10
‐9  

L+N+F+G  0.829    0.755    0.884    0.639    0.908  4.91 x 10
‐8

 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
   



Table 13: Prediction of lethal prostate cancer recurrent (PSADT<4 months and relapse time <12 
months) VS non‐recurrence based on leukocyte LSR, Gleason, Nomogram and fusion transcript 
status (the representative result for Figure 8). 

Model    Accuracy  Sensitivity  Specificity  Youden index  AUC  ROC p‐value 

Equal split training data (n=35) 
LSR    0.743    0.500    1.000    0.500    0.827  3.71 x 10

‐5
 

Nomogram  0.743    0.667    0.824    0.490    0.791  1.07 x 10
‐4

 
Gleason  0.571    0.444    0.706    0.150    0.592  3.34 x 10

‐1
 

Fusion    0.714    0.538    0.867    0.405    0.703  2.46 x 10
‐2

 
L+N+F    0.929    1.000    0.867    0.867    0.959  2.71 x 10 ‐1 3  
L+N+G    0.914    1.000    0.824    0.824    0.951  3.46 x 10 ‐1 4  
N+F+G    0.821    0.769    0.867    0.636    0.833  6.62 x 10 ‐4  
L+F+G    0.893    1.000    0.800    0.800    0.938  4.14 x 10 ‐10 

L+N+F+G  0.964    1.000    0.933    0.933    0.995  < 10 ‐3 0  
 

Equal split testing data (n=35) 
LSR    0.686    0.471    0.889    0.359    0.717  2.60 x 10

‐2
 

Nomogram  0.743    0.824    0.667    0.490    0.778  2.29 x 10
‐4

 
Gleason  0.686    0.588    0.778    0.366    0.722  7.25 x 10

‐3
 

Fusion    0.783    0.600    0.923    0.523    0.762  8.35 x 10
‐3

 
L+N+F    0.913    1.000    0.846    0.846    1.000  < 10

‐3 0
 

L+N+G    0.800    0.765    0.833    0.598    0.810  3.14 x 10
‐4

 
N+F+G    0.783    0.800    0.769    0.569    0.873  1.30 x 10

‐4
 

L+F+G    0.826    0.900    0.769    0.669    0.950  1.06 x 10
‐10 

L+N+F+G  0.870    0.800    0.923    0.723    0.892  8.63 x 10
‐6

 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

   



Table 14: Pairwise ROC p‐value for prostate cancer lethal ‐recurrent and non ‐recurrent status 

prediction (the geometric mean of the 10 cross ‐validations) 

Training => Training 

 

1 
2 
3 
2 
1 
1 
1 
1 

‐ ;  ‐ omogram;  ‐ us on  ranscr p  s a us;  ‐ eason gra e; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

Training => Testing 

 

1 
1 
2 
1 
1 
1 
1 
1 

‐ ;  ‐ omogram;  ‐ us on  ranscr p  s a us;  ‐ eason gra e; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

   



Table 15: Survival p‐values for the predicted prostate cancer lethal ‐recurrent and non ‐recurrent 
groups (the geometric mean of the 10 cross ‐validations). 

Model            Survival p ‐value between two groups 

LSR            5.79 x 10
‐4

 
Nomogram          2.79 x 10

‐3
 

Gleason          5.40 x 10
‐2

 
Fusion            9.26 x 10

‐4
 

LSR + Nomogram + Fusion      1.24 x 10
‐5

 
LSR + Nomogram + Gleason      5.12 x 10

‐5
 

Nomogram + Fusion + Gleason      3.49 x 10
‐4

 
LSR + Fusion + Gleason        2.37 x 10

‐4
 

LSR + Nomogram + Fusion + Gleason    4.24 x 10
‐6

 

 

 

Table 16: Pairwise survival p‐value for prostate cancer lethal ‐recurrent and non ‐recurrent status 

prediction (the geometric mean of the 10 cross ‐validations) 

L‐LSR; N‐Nomogram; F ‐fusion transcript status; G ‐Gleason grade; 
L+N+F: LDA model to combine LSR, Nomogram and fusion transcript status; 
L+N+G: LDA model to combine LSR, Nomogram and Gleason grade; 
N+F+G: LDA model to combine Nomogram, fusion transcript status and Gleason grade; 
L+N+F+G: LDA model to combine LSR, Nomogram, fusion transcript status and Gleason grade. 
 

 

 



WHAT IS CLAIMED IS:

1. A method of determining that a prostate cancer patient is at an increased risk for

relapse or rapid relapse comprising:

(a) determining the number and size of copy number variations (CNVs) in a

sample from the patient; and

(b) determining a large size ratio,

where if the large size ratio exceeds a particular threshold, the patient is deemed to

be at an increased risk for relapse or rapid relapse.

2. The method of claim 1, wherein the sample is a blood sample or a tumor sample.

3. The method of claim 1, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value by the total number of

CNVs.

4. The method of claim 3, wherein the cut-off value is about 25 kb or about 30 kb.

5. The method of claim 3, wherein the cut-off value is about 400 or about 500 kb.

6. The method of claim 1 or 4, wherein a large size ratio equal to or greater than

about 0.28 is indicative that the patient is at an increased risk for relapse.

7. The method of claim 1 or 5, wherein a large size ratio equal to or greater than

about 0.02 is indicative that the patient is at an increased risk for rapid relapse.

8. A method of determining that a prostate cancer patient is at a decreased risk for

relapse or rapid relapse comprising:

(a) determining the number and size of copy number variations (CNVs) in a

sample from the patient; and

(b) determining a large size ratio,

where if the large size ratio is less than a particular threshold, the patient is deemed

to be at a decreased risk for relapse or rapid relapse.

9. The method of claim 8, wherein the sample is a blood sample or a tumor sample.



10. The method of claim 8, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value by the total number of

CNVs.

11. The method of claim 10, wherein the cut-off value is about 25 kb or about 30 kb.

12. The method of claim 10, wherein the cut-off value is about 400 or about 500 kb.

13. The method of claim 8 or 11, wherein a large size ratio less than about 0.28 is

indicative that the patient is at a decreased risk for relapse.

14. The method of claim 8 or 12, wherein a large size ratio less than about 0.02 is

indicative that the patient is at a decreased risk for rapid relapse.

15. A method for treating a prostate cancer patient comprising determining whether the

prostate cancer patient is at increased risk for relapse or rapid relapse, where if the

prostate cancer patient is deemed to be at an increased risk for relapse or rapid

relapse, then performing a prophylactic and/or treatment regimen.

16. The method of claim 15, wherein determining whether the prostate cancer patient

is at an increased risk for relapse or rapid relapse comprises determining the

number and size of copy number variations (CNVs) in a sample from the patient

and determining a large size ratio, where if the large size ratio exceeds a particular

threshold, the patient is deemed to be at an increased risk for relapse or rapid

relapse.

17. The method of claim 15, wherein the prophylactic and/or treatment regimen is

selected from the group consisting of cryotherapy, radiation therapy,

chemotherapy, hormone therapy, biologic therapy, bisphosphonate therapy, high-

intensity focused ultrasound, frequent monitoring, frequent prostate-specific

antigen (PSA) checks, radical prostatectomy and combinations thereof.



18. The method of claim 16, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value by the total number of

CNVs.

19. The method of claim 18, wherein the cut-off value is about 25 kb or about 30 kb.

20. The method of claim 18, wherein the cut-off value is about 400 or about 500 kb.

21. The method of claim 16 or 19, wherein a large size ratio equal to or greater than

about 0.28 is indicative that the patient is at an increased risk for relapse.

22. The method of claim 16 or 20, wherein a large size ratio equal to or greater than

about 0.02 is indicative that the patient is at an increased risk for rapid relapse.

23. A method for treating a prostate cancer patient comprising determining whether the

prostate cancer patient is at a decreased risk for relapse or rapid relapse, where if

the prostate cancer patient is deemed to be at a decreased risk for relapse or rapid

relapse, then performing one or more of high-intensity focused ultrasound,

watchful waiting, frequent monitoring, frequent PSA checks and/or a biopsy.

24. The method of claim 23, wherein determining whether the prostate cancer patient

is at a decreased risk for relapse or rapid relapse comprises determining the number

and size of copy number variations (CNVs) in a sample from the patient and

determining a large size ratio, where if the large size ratio is less than a particular

threshold, the patient is deemed to be at a decreased risk for relapse or rapid

relapse.

25. The method of claim 24, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value by the total number of

CNVs.

26. The method of claim 25, wherein the cut-off value is about 25 kb or about 30 kb.

27. The method of claim 25, wherein the cut-off value is about 400 or about 500 kb.



28. The method of claim 24 or 26, wherein a large size ratio less than about 0.28 is

indicative that the patient is at a decreased risk for relapse.

29. The method of claim 24 or 27, wherein a large size ratio less than about 0.02 is

indicative that the patient is at a decreased risk for rapid relapse.

30. A method of determining that a prostate cancer patient is at an increased risk for

relapse comprising:

(a) determining the number and size of copy number variations (CNVs) in a

sample from the patient; and

(b) determining a large size ratio,

where if the large size ratio is greater than or equal to about 0.28, the patient is

deemed to be at an increased risk for relapse.

31. The method of claim 30, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value of about 25 kb or about

30 kb by the total number of CNVs.

32. A method of determining that a prostate cancer patient is at an increased risk for

rapid relapse comprising:

(a) determining the number and size of copy number variations (CNVs) in a

sample from the patient; and

(b) determining a large size ratio,

where if the large size ratio is greater than or equal to about 0.02, the patient is

deemed to be at an increased risk for rapid relapse.

33. The method of claim 32, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value of about 400 or about

500 kb by the total number of CNVs.

34. A method of determining that a prostate cancer patient is at a decreased risk for

relapse comprising:

(a) determining the number and size of copy number variations (CNVs) in a

sample from the patient; and



(b) determining a large size ratio,

where if the large size ratio is less than about 0.28, the patient is deemed to be at a

decreased risk for relapse.

35. The method of claim 34, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value of about 25 kb or about

30 kb by the total number of CNVs.

36. A method of determining that a prostate cancer patient is at a decreased risk for

rapid relapse comprising:

(a) determining the number and size of copy number variations (CNVs) in a

sample from the patient; and

(b) determining a large size ratio,

where if the large size ratio is less than about 0.02, the patient is deemed to be at a

decreased risk for rapid relapse.

37. The method of claim 36, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than a cut-off value of about 400 or about

500 kb by the total number of CNVs.

38. The method of claim 1, 8, 16, 24, 30, 32, 34 or 36, further comprising determining

one or more of a Gleason grade of the cancer, nomogram and/or fusion gene

status.

39. The method of claim 38, wherein the fusion gene is selected from the group

consisting of TRMT11-GRIK2, SLC45A2-AMACR, MTOR-TP53BP1,

LRRC59-FLJ60017, TMEM135-CCDC67, KDM4B-AC011523.2, CCNH-

C5orf30, MAN2A1-FER and combinations thereof.

40. A kit for determining if a prostate cancer patient is at an increased risk for relapse

or rapid relapse comprising a means for analyzing the number and size of copy

number variations (CNVs) in one or more genes.



41. The kit of claim 40, wherein the means for analyzing the number and size of CNVs

comprises an array and/or microarray suitable for detecting the CNVs.

42. The kit of claim 41, further comprising a software or internet access to software, in

electronically readable form, that determines the number and size of CNVs in the

one or more genes represented in the array.

43. The kit of claim 42, wherein the software (a) determines whether the CNVs exceed

or fall below a size cut-off value and (b) determines a large size ratio.

44. The kit of claim 43, wherein the large size ratio is calculated by dividing the

number of CNVs that are larger in size than the cut-off value by the total number

of CNVs.

45. The kit of claim 40, 41, 42, 43 or 44, further comprising a means for detecting one

or more fusion genes within a sample of the prostate cancer patient.

46. The kit of claim 45, wherein the means for detecting the one or more fusion genes

comprises one or more packaged fusion gene-specific probes and/or primer sets,

arrays/microarrays or antibodies for detecting the one or more fusion genes.

47. The kit of claim 45 or 46, wherein the one or more fusion genes are selected from

the group consisting of TRMT11-GRIK2, SLC45A2-AMACR, MTOR-

TP53BP1, LRRC59-FLJ60017, TMEM135-CCDC67, KDM4B-AC011523.2,

CCNH-C5orf30, MAN2A1-FER and combinations thereof.
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