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(57) ABSTRACT 

A synergy-based human-machine interface that uses low 
dimensional command signals to control a high dimensional 
virtual, robotic or paralyzed human hand is provided. Tem 
poral postural Synergies are extracted from angular velocities 
of finger joints of five healthy subjects when they perform 
hand movements that are similar to activities of daily living. 
Extracted Synergies are used in real-time brain control, where 
a virtual, robotic or paralyzed human hand is controlled to 
manipulate virtual or real world objects. 
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HUMAN-MACHINE INTERFACE BASED ON 
TASK-SPECIFICTEMPORAL POSTURAL 

SYNERGES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent application Ser. No. 61/387,722 entitled “HUMAN 
MACHINE INTERFACE BASED ON TASK-SPECIFIC 
TEMPORAL POSTURAL SYNERGIES” and filed on Sep. 
29, 2010. The entireties of the above-noted applications are 
incorporated by reference herein. 

NOTICE ON GOVERNMENT FUNDING 

This invention was made with government Support by the 
National Science Foundation under Cooperative Agreement 
EEC-0540865, Grant Number 5 UL1 RR024153 from the 
National Center for Research Resources (NCRR), a compo 
nent of the National Institutes of Health (NIH) and NIH 
Roadmap for Medical Research, and a special grant from the 
Office of the Senior Vice Chancellor for the Health Sciences 
at University of Pittsburgh. Additional funding support was 
provided by NIH grants from the NIBIB (1R01EB007749) 
and NINDS (1R21NS056136) and grant W81XWH-07-1- 
0716 from the US Army Medical Research and Material 
Command. The government has certain rights in the inven 
tion. 

ORIGIN OF THE INVENTION 

The innovation disclosed herein is related to a human 
machine interface and more specifically, to a human-machine 
interface that uses low-dimensional command signals to con 
trol a high dimensional virtual, robotic or paralyzed human 
hand. 

BACKGROUND 

In the United States alone, there are over 200,000 people 
living with a chronic spinal cord injury (SCI). People with 
chronic SCI have impaired motor functions that limit their 
ability to perform activities of daily living, such as grasping 
and manipulating objects. A recent Survey of 681 people with 
tetraplegia, also known as quadriplegia, demonstrated that for 
over 45%, regaining arm and hand function would improve 
their quality of life significantly. Improving impaired motor 
function can enable increased social participation and greater 
independence. At the present, physical therapy and biofeed 
back aim to augment function in residual muscles after 
chronic SCI. For muscles with complete loss of descending 
drive, however, these therapies are ineffective. Functional 
electrical stimulation (FES) systems have had limited success 
in restoring functionally important grasps for some individu 
als with tetraplegia. However, while sophisticated FES sys 
tems have been developed, one of the main challenges for 
FES systems is to obtain multiple independent control signals 
that allow stimulation of muscles in a coordinated fashion in 
order to generate Smooth and natural hand movements. 

SUMMARY 

The following presents a simplified Summary in order to 
provide a basic understanding of some aspects of the innova 
tion. This Summary is not an extensive overview of the inno 
vation. It is not intended to identify key/critical elements or to 
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2 
delineate the scope of the innovation. Its sole purpose is to 
present Some concepts of the innovation in a simplified form 
as a prelude to the more detailed description that is presented 
later. 
The innovation disclosed and claimed herein, in one aspect 

thereof comprises a method of controlling the movement of 
an extremity. The method includes performing a plurality of 
tasks and extracting a plurality oftemporal postural Synergies 
from angular Velocities of a plurality of joints based on the 
performance of the plurality of tasks. The method further 
includes receiving a plurality of control signals from a subject 
with a neurological disorder and controlling the plurality of 
temporal postural Synergies with the plurality of control sig 
nals. The plurality of control signals are convolved with a 
plurality of finite impulse filters and an output response from 
the plurality of finite impulse filters are added to obtain a 
resultant angular velocity profile. The resultant angular 
Velocity profile is integrated to obtain a joint position used to 
control movement of the extremity. 
The innovation disclosed and claimed herein, in another 

aspect thereof comprises a human-machine interface (HMI) 
system that includes an extraction component that extracts a 
plurality of kinematic synergies via a movement recording 
component, wherein the movement recording component 
includes a plurality of joints, a transformation component that 
transforms the plurality of kinematic synergies into a plural 
ity oftemporal postural Synergies, a receiving component that 
receives control signals from a subject having neurological 
disorders, a convolving component that convolves the control 
signals with a plurality of kinematic synergies that are essen 
tially finite impulse response (FIR) filters, a combination 
component that combines output responses from the convolv 
ing component that obtains a resultant angular Velocity pro 
file, and a calculating component that calculates movement of 
an extremity based on the resultant angular velocity profile. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1(a) is an example block type schematic diagram of a 
synergy-based Human-Machine Interface (HMI) system in 
accordance with the innovation. 

FIG. 1(b) is an example block type schematic diagram of a 
synergy-based Brain-Machine Interface (BMI) in accordance 
with the innovation. 

FIG. 2 is an example diagram showing objects and equip 
ment used in the synergy-based BMI in accordance with the 
innovation. 

FIG.3 is an example of a head X-ray and a 3-D reconstruc 
tion respectively of a brain both illustrating the placement of 
an electrode array in accordance with the innovation. 

FIGS. 4(a)-(d) are example block diagrams of a hypoth 
esized model for the generation of hand movement in accor 
dance with the innovation. 

FIG. 5 is an example real-time model in accordance with 
the innovation. 

FIG. 6 is an example illustration of waveform graphs show 
ing resulting synchronous synergies in accordance with the 
innovation. 

FIG. 7 is an example illustration of resulting synchronous 
postural Synergies in accordance with the innovation. 

FIG. 8 is an example illustration of waveform graphs show 
ing resulting asynchronous synergies in accordance with the 
innovation. 

FIG.9 is an example illustration of resulting asynchronous 
postural Synergies in accordance with the innovation. 
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FIG. 10 is an example spectrogram illustrating synergies 
controlled by spectral power averaged over a high frequency 
band of the control signals extracted from the brain in accor 
dance with the innovation. 

FIG. 11 is an example embodiment of a BMI system in 
accordance with the innovation. 

FIG. 12 is an example illustration of an example process of 
moving an extremity in accordance with the innovation. 

FIG. 13 is an example illustration of an example process 
showing an extraction of synergies in accordance with the 
innovation. 

DETAILED DESCRIPTION 

The innovation is now described with reference to the 
drawings, wherein like reference numerals are used to refer to 
like elements throughout. In the following description, for 
purposes of explanation, numerous specific details are set 
forth in order to provide a thorough understanding of the 
subject innovation. It may be evident, however, that the inno 
vation can be practiced without these specific details. In other 
instances, well-known structures and devices are shown in 
block diagram form in order to facilitate describing the inno 
Vation. 
As will be described in more detail below, disclosed herein 

is a synergy-based human-machine interface (HMI) system 
100(a), shown in FIG. 1(a) that uses low-dimensional com 
mand signals to control a high dimensional virtual hand. One 
embodiment of an HMI 100(a) is a brain machine interface 
(BMI) 100(b), shown in FIG. 1(b). It is to be appreciated that 
other human machine interfaces, such as a muscular machine 
interface, can be used with the innovation disclosed herein. 
Thus, the embodiment described herein and illustrated in the 
figures is for illustrative purposes only and is not intended to 
limit the Scope of the innovation. Temporal postural Synergies 
are extracted from angular Velocities of finger joints of five 
healthy subjects when the subjects perform hand movements 
similar to activities of daily living. Two synergies inspired 
from the extracted Synergies, a two-finger pinch and a whole 
handgrasp, are used in real-time brain control, where a virtual 
hand with 10 degrees of freedom is controlled to grasp or 
pinch virtual objects. These two synergies, controlled by elec 
trocorticographic (ECoG) signals recorded from two elec 
trodes of an electrode array that spans motor and speech areas 
of an individual with intractable epilepsy, demonstrate a 
closed loop control of a synergy-based brain-machine inter 
face. 

Synergies have been considered as common movement 
primitives that can be generalized for several kinds of move 
ments. In the innovation disclosed herein, however, it was 
determined that synergies may also be task specific. Thus, 
how the synergies are extracted depends on the context of end 
user application. 

BMI's provide a viable and powerful solution for the above 
described user-control problem by accessing and decoding 
the native motor control signals embedded in the activity of 
neurons in sensorimotor regions of the brain. BMIs have 
demonstrated accurate and reliable one and 2-D computer 
cursor control in human studies. It is to be appreciated that 
direct brain control of a 4-D robotic arm, allowing a monkey 
to feed itself via “brain-control” has been demonstrated. One 
of the major challenges is extending this technology to con 
trol high-dimensional systems, for example, controlling a 
human hand, which has over 27 degrees of freedom (DoF). 
Movement planning functions in the brain are hypoth 

esized to occur in a low-dimensional Subspace of movements 
called movement primitives often referred to as Synergies. 
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4 
Synergies enable control of multiple DoF of movement with 
fewer control signals. For example, it was previously demon 
strated that 100 hand grasping movements can be recon 
structed with 10-15 active DoFusing weighted linear combi 
nations of six synergies. Further, it is to be appreciated that 
two synergies can account for 60% of tasks similar to activi 
ties of daily living. Also, in local ensembles of M1 neurons 
recorded from Small intracortical arrays in macaques con 
tained sufficient information to reconstruct 25 joint angles of 
arm, wrist, and hand during reach and grasp tasks with 10 
active DoF. This type of synergy-based control means that 
hundreds of hand postures can be achieved with a limited 
number of synergies. 
Combining the advantages of BMI and the concept of 

synergies, demonstrates the control of a 10 DoF virtual hand 
using two neural control signals in a synergy-based BMI 
100(b), as illustrated in FIG.1(b)and described further below. 
Although specific tasks are described herein, Such as a whole 
handgrasp and a two finger pinch, it is to be appreciated that 
the innovation may be applied to other types of daily living 
type tasks. For purposes of simplicity, however, in the 
embodiment described herein and shown in the figures, the 
tasks will relate to the whole-hand grasp and the two finger 
pinch. Thus, the embodiment described herein and shown in 
the figures is for illustrative purposes only and is not intended 
to limit the scope of the invention. For example, if the task 
intended is typing then there will be a different set of task 
specific synergies. If the task intended is moving the arm, then 
arm joints will be included in the synergies. 

Demonstration of this synergy-based BMI is twofold. 
First, temporal postural synergies s', s are extracted from 
five healthy Subjects performing grasping tasks similar to 
activities of daily living, using two methods: a Singular Value 
Decomposition (SVD) and a Gradient Descent Method 
(GDM). Although, the SVD method and the GDM are dis 
closed herein, it is to be appreciated that other methods such 
as but not limited to, other linear and nonlinear dimensional 
ity reduction methods can also be used to extract the Syner 
gies. Second, the extracted synergies s', s are used in the 
development of a real-time electrocorticogoraphy (ECoG) 
based BMI and tested in one subject with electrodes 
implanted intracranially for monitoring epileptic seizures. 
The following description illustrates a Convolutive Mix 

tures Model for Generation of Hand Movement. Still refer 
ring to FIG. 1(b), an illustration of how brain-controlled 
synergies combine to form movement is shown. Grasping 
hand movement is achieved by a weighted linear combination 
(ws'+ws') of two synergies, where w-0.5 and w=0.5 
represent the weights extracted from neural recordings. The 
weighted combination of two time-varying synergies s', st 
leads to the formation of a hand movement profile. Specifi 
cally, two neural signals control two distinct synergies s', sto 
achieve a grasping hand movement using a weighted linear 
combination (ws'+swa) of two synergies, where w and wa 
represent weights extracted from brain signals. Each row of a 
synergy corresponds to the angular velocity profile of a finger 
joint. For example, the first synergy represents the synchro 
nous large movement of first joint and medium movement of 
the second joint followed by a small movement of the third 
joint. In this example, sands form a weighted (w—w-0.5) 
combination resulting in the aggregate movement (black) in 
the reconstructed joint angular velocity graph 102. For illus 
tration purposes, only three often joints of the hand are shown 
in the synergies and the reconstructed movement. FIG. 1(b) 
also shows the hand postures 104 of the reconstructed move 
ment across time. 
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Still referring to FIG. 1(b), it is possible that synergies may 
be recruited multiple times by the brain to achieve certain 
movements. This is accounted for in a convolutive mixtures 
model, which is a hypothetical model that presents the Syn 
ergy decomposition problem in Solvable form. A mathemati 
cal model, generalized form synergies that can be reused K, 
times can be numerically represented as Formula 1(a) or 1 (b) 
below: 

Formula 1(a) 
y(t) =X y cks (t-ti) 

O 

in Ki Formula 1 (b) 
v(t) =X X cas (t-ti), i=1,..., n. 

In the above equations, V(t) denotes V (t), . . . . V., (t)', 
where' represents transpose, V.(t)(i=1,..., n) represents an 
angular Velocity of the i-th joint of the hand at time t, and n is 
the total number of the considered joints of the hand; a single 
kinematic synergy is denoteds,(t)=|s', (t), ..., s,(t)', where 
jranges from 1 to mand m is the total number of synergies; K, 
is the number of repeats of the j-th synergy used in V(t), and 
c, and t, represent the amplitude coefficient and time shift, 
respectively, of the k-th repeat of the synergy s(). The 
example shown in FIG. 1(b) can be expressed using the above 
equations with n=3 joints, m-2 synergies, K-1 (both syner 
gies used once), c, 0.5 for weights w w 0.5, and s () as a 
matrix with three rows and as many columns as there are time 
samples. The reconstructed angular velocities V(t) are the 
same dimension as s(). 
The Synergy-based movement generation can be inter 

preted by the convolutive-mixture model. Specifically, refer 
ring to FIGS. 4(a) and (b), the angular velocities V, offinger 
joints can be modeled as convolutive mixtures of neural com 
mand signals represented by impulse trains. This process can 
be viewed as the activation of a synergy and is similar to the 
production of impulse responses of a set of filters, each of 
which triggers the movement of a specific finger joint. Based 
on the above model, when the j-th synergy generator is acti 
vated by a command signal c, (t) containing a train of 
impulses with amplitudes c, at timest k=1,..., K, an 
angular-velocity profile of the finger joints becomes: 

Ki Formula 2 

where * represents convolution. When more than one synergy 
is considered (see FIG. 4(b)), the convolutive mixture model 
can then be expressed by either Formula (1a) or (1b). Specifi 
cally, a movement profile of the hand can be modeled as the 
convoluted mixtures expressed by either Formula (1a) or (1b) 
of command impulses passing through the corresponding 
filters or synergy generators. 

Referring to FIGS. 2(a)-2(c), a first experiment is per 
formed with five healthy subjects (subjects 1-5), male and 
female ages 27-35 years, with no known neurological disor 
ders. The subjects are tested in a set of behavioral tasks that 
are based on activities of daily living. All five participants 
wore a cyberglove 202(c) during the experiment, as shown in 
FIG. 2(c). The cyberglove 202(c) is equipped with 22 sensors 
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6 
that measures an angle of each finger joint, including the 
distal interphalangeal (DIP), proximal interphalangeal (PIP) 
and metacarpophalangeal (MCP) joint angles. For this 
experiment, however, only ten of the sensors (MCP and PIP 
joints), as indicated by the dark circles 204(c) in FIG. 2(c) 
were analyzed. As shown in FIG. 2 (a), multiple wooden and 
plastic objects 202(a) of different shapes (e.g. spheres, circu 
lar discs, rectangles, pentagons, nuts, and bolts) having 
dimensions ranging from 1.5 cm to 11.8 cm were presented to 
the subjects based on two criteria. First, objects of the same 
type but different sizes were included. Second, objects having 
different shapes were chosen to isolate proximal and metac 
arpal joints. A typical experiment consisted of 28 tasks cor 
responding to 28 objects. In each task, the Subject was seated 
comfortably and rested their hand at corner of a table. When 
prompted, the Subject reached and grasped the object visibly 
placed 40 cm away on the table, as shown in FIG. 2(b). Each 
trial lasted for 1 second. The subjects completed 10 trials for 
each task (object) type. Rest breaks of approximately 2-3 
minutes were incorporated between the tasks. The beginning 
and the end of the task were indicated by computer-generated 
beeps. Although the grasping times differed slightly from 
object to object, all of the subjects were able to grasp the 
objects within 0.86 seconds. This time window of 0.86 sec 
onds was used for further analysis. 

In a second experiment, one subject with intractable epi 
lepsy was used to demonstrate real-time control of the Syn 
ergy-based BMI. As part of the standard clinical procedure 
for epilepsy monitoring, an 8x8 intracranial electrocortico 
graphic (ECoG) electrode array was implanted to help with 
the planning of Surgical treatment for intractable epilepsy. 
The electrode array includes 64 disc electrodes, 3 mm in 
diameter with a 10 mm inter-electrode distance, embedded in 
a silastic sheet. FIG.3(a) is a head X-ray 300a) of the subject 
with the 8x8 ECoG electrode array 302(a) covering the pari 
etal lobe, temporal lobe and posterior portion of the frontal 
lobe of the left hemisphere. The colored dots indicate areas 
related to hand movement (red) or speech (green) as deter 
mined by cortical stimulation mapping for localization of 
eloquent (e.g., motor and language) areas of the cortex. 
Because multiple electrodes responded to hand movement 
and Vocalization, the electrodes showing the greatest differ 
ence in time-averaged spectral power compared to baseline 
spectra during rest were selected for brain control. The selec 
tion of electrodes is an active area of research in neuroscience. 
Automatic detection of favorable electrodes can be used in 
conjunction with a synergy-based HMI. 

FIG. 3(b) shows the electrode grid location 302(b) pro 
jected on a standard 3-D brain model 3000b) showing the 
electrodes selected for brain control. Neural signals recorded 
using a neural recording system were band-pass filtered 
between 0.1 and 200 Hz and digitized at a sampling rate of 
1200 Hz. These digitized ECoG signals were sent to a cus 
tom-built high-performance computer 502, such as but not 
limited to a BCI2000 (see FIG. 5), running a general purpose 
software package for real-time BMI studies. The recorded 
signals were transformed into a frequency domain using an 
autoregressive model (e.g. maximum entropy method) of 
order 18, with a bin width of 10 Hz using a sliding window of 
300 ms. Spectral power for the two selected electrodes was 
averaged over the high frequency (e.g. 75-115 Hz) band. 
Spectral estimates were performed at 30 Hz and fed into a 
real-time model as control signals. The control signals may be 
comprised of invasive or non-invasive brain (neural) signals 
or muscular signals generated from neck muscles, shoulder 
muscles, etc., Further, the control signals may be signals 
detected by peripheral sensors that detect the parameters like 
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limb movement, Sound or temperature. For example, a 
peripheral sensor may track a movement of an eye (eye 
tracker), the movement of the head (head tracker). A periph 
eral sensor may detect the clicking of teeth (tooth click sen 
sor). 

Both synchronous and asynchronous synergies are 
extracted from the subjects as described below. As mentioned 
above, the convolutive mixtures model is a hypothetical 
model that presents the synergy decomposition problem in a 
solvable form. The neural representation of synergies and the 
existence of synergies are an ongoing field of research. Nev 
ertheless, the above model assists in formulating the problem 
ofusing synergies in the field of neural prostheses and robot 
ics. It is unknown if the synergies are recruited synchronously 
or asynchronously by human beings during natural grasping 
movements. Therefore, both synchronous and asynchronous 
synergy models are disclosed herein. It should be noted that 
these special cases also help in modular reduction to decrease 
the computational burden of this complex synergy decompo 
sition problem. 
An assumption is that the Synergies combine instanta 

neously in order to generate the grasping movements per 
formed by the subjects in the first experiment. FIG.4(c) is an 
illustration where a reach and grasp movement is achieved as 
a weighted Sum of synchronous (having the same onset time) 
synergies. Thus, as a special case of the convolutive mixtures 
model, the angular-velocity profile of a movement can be 
assumed to be a weighted Summation of synchronous syner 
gies as expressed in the following: 

i Formula (3) 
v(t) =X cos(t-to) 

where the impulses c, (t), ji=1,..., m, occur at the same time 
to but may have different amplitudes co. As mentioned above, 
the Singular Value Decomposition (SVD) method is used to 
extract synchronous synergies. 

FIG. 4(d) illustrates that a reach and grasp movement is 
achieved as a weighted Sum of asynchronous (having differ 
ent onset times) synergies. Because asynchronous synergies 
may not combine instantaneously or may combine at differ 
ent times, the gradient descent method based on a recursive 
minimization of the reconstruction error is used to extract the 
synergies. Thus, the following formula is obtained by reduc 
ing the convolutive mixtures model of Formula (1a): 

i Formula (4) 
V(t) =Xcs (t-t') 

where subscript p denotes a particular task in which the sub 
ject reached and grasped a particular object. Note that the 
weights of synergies c and time shifts of the synergiest are 
specific to the task, but the synergies s() are the same across 
all the tasks. Joint angular velocities, V(t) are calculated from 
recorded joint angles. Then a recursive minimization of 
reconstruction error algorithm is used to find the weights c, 
and time-shiftst, of the synergies as well as the synergies s'() 
themselves. 

The following is a description of the steepest descent 
method using a recursive minimization of reconstruction 
error to find the minimum error. In this method, averaged 
angular velocities V(t) across each trial is obtained for each 
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8 
object. One Such angular velocity profile has ten rows corre 
sponding to the ten joints (MCP and PIP) of five fingers. The 
number of columns is equal to the number of samples. These 
angular Velocity profiles are then used as inputs to the gradi 
ent descent method, described below. For each subject, opti 
mization was performed in eight cases in which an increasing 
number of synergies, 1 to 8, are considered. The reconstruc 
tion error is given by: 

Formula (5a) 

Formula (5b) 

where ||is the Euclidian norm, E is the total error, E, refers 
to the error per task, T is duration of a task and Prefers to the 
total number of tasks. 
The steepest descent method having a constant step size is 

an optimization algorithm used to minimize the error. For 
each subject and for each number of synergies (m), the algo 
rithm was run multiple times, starting from different initial 
values of the synergies to avoid local minima. The stopping 
criterion of the algorithm was chosen to be approximately 
2000 iterations, as at this point there was no appreciable 
decrease in the total error E. 
The algorithm can be broken down to three major acts. 1) 

Find optimal synergy shifts: Compute the Sum of scalar prod 
ucts of the p" task and j" synergy shifted by time t or the 
Scalar product of the cross-correlation at delay t, for all pos 
sible delays. Select the synergy and delay t, with the highest 
cross-correlation. Subtract from the data the selected Synergy 
(after Scaling and time shifting). Repeat this for remaining 
synergies. This completes one task/object. Repeat the same 
for all remaining tasks. 2) Update the weights: For each task, 
given the synergies and delaySt. update the weights c, using 
the gradient descent method 

p: 

2 Ac- 1.V.E. 
where c, denotes (c.,..., c.', where' represents transpose. 
3) Update the synergies: Given optimal shifts and updated 
weights, update the Synergy elements S s'(t) by the gradient 
descent method. 

2 As -u.V.E 
After these acts are performed, the error is calculated and 

the above acts are repeated until the lowest possible error is 
achieved. The number of synergies is predicted by the mini 
mum number of synergies needed to yield the lowest possible 
reconstruction error. 
An example of the development of a real-time Hand Con 

trol Model is described with reference to FIG. 5. FIG. 5 is an 
example block diagram illustrating the real-time Hand Con 
trol Model 500. The model 500 receives two neural signals c, 
c that control two synergies, synergy 2 and synergy 1 respec 
tively. These neural signals C,c are computed as the average 
spectral power of the high frequency (75-115 Hz) band from 
two selected electrodes. It has been observed that the high 
frequency spectral power of the ECoG and local field poten 
tial signals recorded from the motor cortex contains motor 
related information. During the brain-control task, the subject 
was asked to modulate their neural activity in order to control 
the synergies to grasp a ball, pinch a pen, or be idle in the 
virtual world. The two synergies in the model correspond to a 
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two-finger pinch, Synergy 1, and a whole-handgrasp, synergy 
2. These two synergies are inspired by the Synergies extracted 
from the first part of the study. Each synergy, synergy 1. 
synergy 2, was modeled as a bank of Gaussian filters 504, 
506. A Gaussian filter is a finite impulse response (FIR) filter 
that has a Gaussian bell shaped impulse response. Each filter 
corresponds to a single finger joint. As such, the two-finger 
pinch synergy, synergy 2, had only four Gaussian filters 502 
that corresponded to four joints (two per finger) of the index 
finger and the thumb. Similarly, the whole-hand grasp Syn 
ergy, synergy 1, has ten Gaussian filters 506 that correspond 
to ten joints of the four fingers and the thumb. The neural 
signals c. c. were convolved with the Gaussian FIR filters 
504,506 to generate a response. Output form the two syner 
gies are added to provide the resultant angular Velocity pro 
file, which when integrated results in joint positions used to 
control the virtual hand 202 (c). Using (1b) and (2), this can be 
represented as: 

where P(t) represents the spectral power of the neural signal 
and P, is a power threshold. The high-gamma band power 
(after being subtracted off the threshold) continuously con 
Volves with the Synergies to result in angular Velocities. 
Unlike the convolutive mixtures model that uses discrete 
impulses to control synergies, the real-time model uses con 
tinuous control signals (i.e., high-gamma band power). This 
is because the command signals are high-gamma band pow 
ers of the signals recorded from the ECoG electrodes, which 
reflect the ensemble neuronal activity and not single neuron 
activities. As Formula (6) demonstrates, when the task spec 
tral power is below the power threshold, the command signal 
controlling a synergy is null resulting in Zero joint angular 
velocity. On the other hand, when the task spectral power is 
above the power threshold, the joint angular Velocity is pro 
portional to the power spectral difference. The resultantangu 
lar Velocities are then integrated to obtain the joint positions 
that controlled the virtual hand. As mentioned above, the 10 
degrees of freedom of the virtual hand correspond to the five 
MCP joints and five PIP joints of thumb and four fingers. 
As mentioned above, the synchronous synergies were 

obtained using the SVD method. Synergy waveforms 600 of 
the resulting kinematic synergies for Subject 1 are shown in 
FIG. 6. Each synergy is about 0.86 seconds in length (55 
samples at 64 Hz). The abbreviations for FIG. 6 are as fol 
lows: T thumb; I index finger; M middle finger; 
R—ring finger; P pinky finger, MCP metacarpopha 
langeal joint; IP interphalangeal joint; PIP proximal 
interphalangeal joint. 
The first three synergies, synergy 1, Synergy 2, Synergy 3, 

selected are the first three eigenvectors, which corresponded 
to the top three eigenvalues. These three synergies cumula 
tively account for 90% of the variance of all hand postures 
during the 28 grasping tasks. Note that the synergies, synergy 
1, Synergy 2, Synergy 3, are in the space of angular velocities. 
Given the initial “open' hand posture, joint velocities are 
integrated to produce joint positions of intermediate postures. 
These are referred to as temporal postural synergies, as they 
preserve both the temporal and the postural information con 
tained in the synergies. 
A similarity index (SI) (on a scale of 0-1, where 0 repre 

sents a minimum similarity and 1 represents a maximum 
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10 
similarity) based on the normalized inner product between 
the joint position vector of the obtained posture and that of an 
ideal whole-handgrasp or an ideal two-finger pinch is calcu 
lated. The ideal whole-hand and two-finger pinch grasps are 
determined by the joint angles of the virtual hand, shown in 
FIGS. 7 and 9, when 1) all the fingers and the thumb are flexed 
during a whole-hand grasp, and 2) the thumb and the index 
finger are flexed during a two-finger pinch. The similarity 
index measures how similar an end posture of particular syn 
ergy is to either a whole-hand grasp or a two-finger pinch. 
The temporal evolution of postural synergies 700(a) for 

subject 1 is shown in FIG. 7(a). Each row corresponds to a 
temporal profile of one synergy. Each posture 702(a) is a 
snapshot taken at discrete time steps 704(a) of 25%, 50%, 
75%, and 100% of a task time. The synergies are arranged in 
the order of their significance, with the first row (synergy 1) 
being the most significant, the middle row (synergy 2) being 
less significant, and the last row (synergy 3) being the least 
significant. The end posture 706(a) of synergy 1 corresponds 
to a whole-handgrasp (SI-0.99) and an end posture 708(a) of 
synergy 2 corresponds to a two finger pinch (SI-0.99). 

FIG. 7(b) shows the postural synergies 700(b) of subjects 
2-5. Each row corresponds to the end postures of three sig 
nificant synergies for each subject. The first and second col 
umns correspond to whole-handgrasp (SIs=0.99, 0.95, 0.94. 
0.98 for subjects 2-5, respectively) and two-finger pinch syn 
ergies (SIs=0.94, 0.98, 0.95, 0.90) observed across the sub 
jects. 
As mentioned above, asynchronous synergies 800 were 

obtained using the steepest descent method. Synergy wave 
forms 800 of the resulting kinematic synergies for subject 1 
are shown in FIG. 8. Each synergy is 0.86 s in length (55 
samples at 64 Hz). The abbreviations for FIG. 8 are as fol 
lows: T thumb; I index finger; M middle finger; 
R—ring finger; P pinky finger, MCP metacarpopha 
langeal joint; IP interphalangeal joint; PIP proximal 
interphalangeal joint. In contrast to the synchronous syner 
gies derived using the SVD method, the asynchronous syn 
ergies are not ranked in order of significance. Using the meth 
ods described above, the asynchronous kinematic synergies 
are transformed to temporal postural Synergies. 
The temporal evolution of postural synergies 900(a) of 

Subject 1 is shown in FIG. 9(a). Each row corresponds to the 
temporal profile of one synergy. Each posture 902(a) is a 
snapshot taken at discrete time steps 904(a) of 25%, 50%, 
75%, and 100% of a task time. The end posture 906(a) of 
synergy 1 corresponds to a whole-hand grasp (SI-0.95) and 
an end posture 908(a) of synergy 2 corresponds to a two 
finger pinch (SI-0.99). FIG. 9(b) shows the postural syner 
gies 900(b) of subjects 2-5. Each row corresponds to the end 
postures of three significant synergies for one Subject. The 
first and second columns illustrate whole-hand grasp 
(SIs=0.97, 0.94, 0.99, 0.90, for Subjects 2-5 respectively) and 
two-finger pinch synergies (SIS-0.95, 0.92, 0.93, 0.92) 
observed across the Subjects. 

During real-time control, the Subject was instructed to con 
trol the whole-handgrasp and the two-finger pinch synergies 
by selectively modulating the activity of two selected elec 
trodes, one located over hand motor cortical areas (grasp) and 
the other located over speech cortical areas (pinch). The sub 
ject modulated the selected electrodes by overt hand flexion 
and overt Vocalization during training and testing sessions. 
An initial calibration process was used to determine a thresh 
old value for each control signal c, ca. The process included 
alternating periods of rest and movement or Vocalization dur 
ing the modulation of high frequency band power. The thresh 
olds were set to the midpoint between spectral power during 
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rest and movement or vocalization. When the task spectral 
power was below the power threshold, the command signal 
controlling a synergy was null resulting in a Zero joint angular 
velocity. When the task spectral power was above the power 
threshold, the joint angular Velocity was proportional to the 
power spectral difference, as shown in Formula (6) above. 
The subject had to increase the spectral power on the corre 
sponding electrode to achieve a desired posture, within five 
seconds, with the virtual hand 202(c). Once the desired pos 
ture was achieved the subject was instructed to relax. The 
subject was given real-time visual feedback of the posture of 
the virtual hand 202(c). At the beginning of the session, 
congruent neural activities were observed in both electrodes 
when the Subject was attempting to learn the mapping 
between task space and synergies’ space. After a short learn 
ing period, the Subject began to modulate the two control 
signals c. c independently and achieve good control of the 
two synergies, synergy 1, Synergy 2, to control the virtual 
hand 202(c), as shown in the spectrograms 1000 in FIG. 10. 
The spectrograms illustrate the percent change from baseline 
power of the two selected electrodes. Baseline power was 
computed during an initial rest period at the beginning of the 
session. Callout 11002 illustrates the formation of a whole 
hand grasp when the average spectral power of the neural 
signal at electrode 1 is above its threshold and neural signal at 
electrode 2 is below its threshold. Similarly, Callout 2 1004 
illustrates a two-finger pinch. Data is plotted from the second 
session when the Subject started to gain good control of the 
two synergies, Synergy 1, Synergy 2. 

The results of the sessions were quantified to measure the 
Success rate of the sessions. Specifically, a session was 
deemed successful when only one electrode, the one corre 
sponding to the control signal for that synergy, was modu 
lated. A session was deemed a failure when either the non 
corresponding electrode was modulated, thus forming a 
posture different from the desired posture, or when both elec 
trodes were simultaneously modulated, or when neither elec 
trodes were modulated, thus not moving the hand. The virtual 
hand posture itself was not used to determine Success because 
in the case of whole-handgrasp target, simultaneously modu 
lating both electrodes would still result in a whole-handgrasp 
of the virtual hand. The duration of recording sessions 
depended on the Subject's clinical condition, willingness to 
participate, and the schedule of clinical procedures. Because 
the Subject was naive to the task prior to the sessions, the 
training time required before the first session was longer than 
the training time prior to the second session. Specifically, the 
first training time was 750 seconds and the second training 
time was 250 seconds. As a result, the first session lasted for 
1170 seconds and the subject was successful in 34/37 (91.9%) 
trials. On the other hand, the second session lasted for 625 
seconds and the subject was successful in 30/31 (96.8%) 
trials. 
As used in this application, the terms "component' and 

“system” are intended to refer to a computer-related entity, 
either hardware, a combination of hardware and software, 
Software, or software in execution. For example, a component 
can be, but is not limited to being, a process running on a 
processor, a processor, an object, an executable, a thread of 
execution, a program, and/or a computer. By way of illustra 
tion, both an application running on a server and the server 
can be a component. One or more components can reside 
within a process and/or thread of execution, and a component 
can be localized on one computer and/or distributed between 
two or more computers. 

While, for purposes of simplicity of explanation, the one or 
more methodologies shown herein, e.g., in the form of a flow 
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chart, are shown and described as a series of acts, it is to be 
understood and appreciated that the Subject innovation is not 
limited by the order of acts, as some acts may, in accordance 
with the innovation, occur in a different order and/or concur 
rently with other acts from that shown and described herein. 
For example, those skilled in the art will understand and 
appreciate that a methodology could alternatively be repre 
sented as a series of interrelated States or events, such as in a 
state diagram. Moreover, not all illustrated acts may be 
required to implement a methodology in accordance with the 
innovation. 

FIGS. 11 and 12 illustrate an example embodiment of an 
HMI system that includes a BMI 1100 and an example pro 
cess of controlling movement of an extremity as described 
above respectively implementing the innovation is illustrated. 
At Act 1202, the subjects perform a plurality of tasks as 
described above using a movement recording component 
1102, such as the cyberglove 202(c). At Act 1204, a plurality 
of kinematic synergies are extracted with an extraction com 
ponent 1104. The plurality of kinematic synergies are 
extracted from angular velocities of a plurality of joints based 
on the performance of the tasks. At Act 1206, a transformation 
component 1106 transforms the kinematic synergies into 
temporal postural synergies. A plurality of control signals 
1106 are sent to the BMI 1100, which is generated by a 
subject having neurological disorders. At Act 1208, a receiv 
ing component 1110 receives the plurality of control signals 
1106 and sends the control signals 1108 to a convolving 
component 1112. The control signals 1108 activate or control 
the plurality of temporal postural synergies, as described 
above, Act 1210. At Act 1212, the convolving component 
1112 convolves the plurality of control signals 1108 and the 
temporal postural Synergies. At Act 1214, a combination 
component 1114 combines or adds output responses from the 
convolving component 1112 to obtain a resultant angular 
Velocity profile. At Act 1216, a calculating component inte 
grates the resultant angular Velocity profile to control the 
movement of the extremity. 

Referring to FIG. 13, the method of extracting the temporal 
postural Synergies is described. At Act 1302, a joint angle for 
each of the plurality of joints is determined based on a result 
of the plurality of tasks. At Act 1304, the angular velocities of 
the plurality of joints are calculated based on the joint angles. 
At Act 1306, the kinematic synergies are derived from the 
angular Velocities using linear and/or nonlinear dimensional 
ity reduction methods such as, but not limited to, the SVD 
method and the GDM. At Act 1308, the kinematic synergies 
are stored in a storage component 1120 of the HMI system 
1100 thereby forming a digital library ofkinematic synergies. 
At Act 1310, a retrieving component 1122 retrieves a subset 
of kinematic synergies from the digital library of kinematic 
synergies. At Act 1312, the temporal postural Synergies are 
derived from the kinematic synergies by integrating angular 
Velocity profiles of the kinematic synergies. 
As mentioned above, two numerical methods are used in 

extracting synchronous and asynchronous synergies. The 
gradient descent method used recursive error minimization, 
while the SVD method used the most commonly used eigen 
vectors (that corresponded to higher eigenvalues) to extract 
synergies. It is unknown if the synergies are recruited Syn 
chronously or asynchronously during natural movements, 
thus, in the innovation disclosed herein, the synergies were 
extracted using both methods. If the synergies are recruited 
synchronously, then both methods would extract the same set 
of synergies because the synchronous synergies model is a 
Subset of the asynchronous synergies model. 
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In the innovation disclosed herein, it was observed that 
both methods led to similar temporal postural Synergies, see 
FIGS. 7 and 9, which may suggest that synergies are recruited 
synchronously in the natural grasping movements that were 
tested. This is validated by comparing the end postures of the 
first two synergies obtained by both methods for all five 
subjects. Similarity indices above 0.90 were obtained for all 
subjects. Further, in additional tests that included 10 subjects, 
over 100 natural grasping movements demonstrated that 
major synergies that contributed significantly to the recon 
struction of the movements, were recruited synchronously. 
This suggests that synchronous synergies can be extracted 
from natural grasp movements using the SVD method, which 
only requires a few minutes of processing time. In order to 
generalize other movements, it may be necessary to extract 
asynchronous synergies using the gradient descent method at 
the cost of longer processing times. The real-time model is 
capable of handling both synchronous and asynchronous syn 
ergies. The timing of the neural command signals (c.) 
decides whether the synergies will be used synchronously or 
asynchronously. 

In the innovation disclosed herein, it was demonstrated that 
two independent neural signals c. c. control two synergies, 
synergy 2 and synergy 1 respectively. The use of the two 
neural signals c. cachieves coordinated control often joints 
of a virtual hand in order to grasp or pinch virtual objects. One 
goal of the innovation is to control the Synergies separately, 
which is essentially equivalent to two-dimensional control. 
The advantages of the synergy model are better realized when 
Subjects can simultaneously control the two synergies in 
weighted combinations to achieve various hand postures. The 
two synergies controlled by the neural signals can thus be 
combined to achieve multidimensional control. This is cru 
cial for controlling dexterous prosthetic limbs that are cur 
rently being developed since the number of control signals 
will always be limited. 

The results shown herein indicate simultaneous control of 
two synergies to achieve multidimensional control. Simulta 
neous and graded control of neural signals from two different 
brain areas may prove challenging for Subjects. Instead, 
decoding the native motorintent or decoding the type of grasp 
from neural signals in real-time and using them to command 
the synergies will achieve intuitive control. Through suffi 
cient training the subjects will be able to overcome this chal 
lenge and modulate the neural signals to control Synergies. 
The synergy model disclosed herein is not limited to electro 
corticographic brain control. The synergies can potentially be 
controlled by neural signals extracted from noninvasive tech 
niques like electroencephalography and magnetoencepha 
lography or other types of control Such as, limb kinematics, 
myoelectric control of a multidimensional prosthesis, etc. 
One improvement to the real-time Human-Machine Inter 

face Models is that the innovation demonstrates control of 
kinematic synergies in a real-time HMI. This is a first step 
toward demonstrating the potential use of time-varying kine 
matic synergies to achieve high-dimensional control. 

Additional yet to be determined benefits may include: 1) 
Two synergies (whole-hand grasp and two-finger pinch) 
inspired by the extracted synergies were used in the real-time 
synergy model. Although the extracted Synergies were not 
used in the real-time model, the Gaussian filter based syner 
gies, nevertheless, were inspired by the extraction methods. 
The use of banks of Gaussian filters 504, 506 was a first 
approximation assuming Smooth bell-shaped Velocity pro 
files. The Gaussian filters 504, 506 are adapted for at least 
three reasons: 1) it is likely more difficult to control and track 
hand posture if synergies with multiple Sub-movements are 
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14 
used during initial learning; 2) it simplifies the Subjects 
transformation from task space to synergy space; and 3) 
Gaussian filter synergies are not subject-specific (i.e., they can 
be generalized across multiple users) yet they are inspired by 
anatomical synergies. 

Gaussian filter based synergies were optimized for recon 
struction using the methods described above. Using banks of 
Gaussian filters as Synergies may limit the number of postures 
and the accuracy of postures that can be achieved by combin 
ing them in weighted combinations. On the other hand, 
extracted synergies with complex Sub-movements can pose 
limitations on Subject training as described above. Consider 
ing both limitations, it is desirable to begin Subject training 
with Gaussian filter based synergies. As the Subject learns to 
control these simple synergies, the complex extracted Syner 
gies can be introduced to enable more movements. The use of 
Gaussian filter based synergies is only a preliminary demon 
stration of what the real-time synergy model is capable of. 
This model can also include real-time control of extracted 
Synergies. 

2) Increasing the number of synergies used in real-time can 
possibly expand the applicability of the model. A limitation to 
this is the number of independent channels that can be 
obtained from current BMI technology. This limitation could 
possibly be overcome with training or neural interfacing tech 
nologies. Specifically, neural plasticity can be induced 
through closed-loop training. It has been demonstrated to 
induce plasticity to de-correlate two control signals extracted 
from brain areas that were originally correlated to each other. 
In neural interfacing technologies, high density grids such as 
micro-ECOG are being used in BMIs that enable more inde 
pendent signals (less coherent) to be extracted. This offers 
potential for improved spatial resolution and increase in the 
number of DoF that can be controlled. 

3) Currently the synergy model relies completely on the 
visual feedback for users to modulate the weights of synergies 
to Successfully perform a grasp. Providing Somatosensory 
feedback may assist the Subjects in determining effective 
control of synergies. 

4) The synergy model is purely kinematic in nature, pro 
viding joint Velocity/position control. The model does not 
include musculoskeletal dynamics. Exporting the model into 
musculoskeletal modeling Software can provide a simulation 
environment close to the real world. 

5) If synergies have direct representations in neural signals 
then intuitive control can be achieved. 

Synergies have been generalized as movement primitives 
that can be found across a variety of hand movements. In 
contrast, the innovation disclosed herein found that the Syn 
ergies are task-specific. This does not mean that there are 
specific synergies in each grasping task. The task here means 
context; like reaching and grasping, hand writing, etc. The 
synergies specific to reaching and grasping tasks need not be 
used in hand writing tasks. The task-specific nature of the 
synergies was observed when an experiment was conducted 
in which the synergies extracted from grasping and pinching 
movements were used to reconstruct American Sign Lan 
guage (ASL) postures. Reconstruction errors were larger for 
ASL hand posture tasks when compared to those of pinch and 
grasp tasks, suggesting task-specific nature of Synergies. 
Instead of generalizing synergies across a variety of tasks, it is 
more effective to use task-specific synergies. Thus there will 
be task-specific libraries that contain task-specific synergies. 
For example, reaching and grasping would likely require a 
library that is distinct from a keyboard typing related Synergy 
library. Thus according to application, the BMI user can learn 
to select the appropriate libraries. Given the limitation of the 
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number of control signals available for a BMI, grouping the 
synergies into task specific libraries decreases the number of 
synergies that are controlled simultaneously. The selection of 
the libraries can be done by peripheral sensors as described 
above. If the type of task or motor intent can be decoded from 
neural signals, then decoded neural signals can select librar 
ies. 
ECoG provides a good balance between low resolution 

(spatial and temporal) noninvasive technologies and high 
resolution single neuron recordings and, thus has proved to be 
a promising neural recording methodology. In a recent study, 
it was found that both epidural and subdural recordings offer 
similar signal resolution, Suggesting the possibility of record 
ing high-fidelity ECoG signals epidurally and reducing the 
invasiveness of the procedure required to implant ECoG elec 
trodes. During self-paced finger flexion movements, move 
ments of different fingers elicited distinct patterns of activity 
on individual electrodes. Robust 2-D control using ECoG has 
been demonstrated in both nonhuman primates and humans. 
It is to be appreciated that is has been shown that ECoG has 
detailed neural representations in decoding finger movements 
during offline analysis. Within the limited recording time in 
the epilepsy monitoring unit, a subject was able to learn to 
control a synergy-based BMI. Furthermore, in a subsequent 
recording session, the Subject was able to achieve good con 
trol in less training time when compared to the first session. 
Through multiple training sessions it is foreseeable that the 
Subjects could achieve efficient control of more synergies, 
thus enabling multidimensional control of a virtual hand. 
Combining the advantages offered by ECOG and synergies, 
robust control of a virtual hand with high DoF, can be 
achieved. 

In the innovation, synchronous and asynchronous temporal 
postural Synergies were extracted using the SVD method and 
the gradient descent method from tasks similar to activities of 
daily living. Two synergies inspired by the extracted Syner 
gies to demonstrate control of a 10 DoF virtual hand with two 
neural command signals, thus combining the synergy model 
and an electrocorticographic BMI. As a result, brain control 
of synergies could have potential applications in controlling 
FES systems or dexterous prosthetic limbs. 

While many of the examples of the specification and 
appendices are related to hand movements (e.g., hand pros 
thesis), it is to be understood that the features, functions and 
benefits of the innovation can be applied to other extremities 
and/or joints without departing from the scope of this speci 
fication (and attached/incorporated materials). 
What has been described above includes examples of the 

innovation. It is, of course, not possible to describe every 
conceivable combination of components or methodologies 
for purposes of describing the Subject innovation, but one of 
ordinary skill in the art may recognize that many further 
combinations and permutations of the innovation are pos 
sible. Accordingly, the innovation is intended to embrace all 
Such alterations, modifications and variations that fall within 
the spirit and scope of the appended claims. Furthermore, to 
the extent that the term “includes” is used in either the 
detailed description or the claims, such term is intended to be 
inclusive in a manner similar to the term "comprising as 
“comprising is interpreted when employed as a transitional 
word in a claim. 

What is claimed is: 
1. A method of controlling movement of an extremity of a 

primate, robot, or machine, wherein the extremity comprises 
a controlled plurality of joints, comprising: 
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16 
recording a plurality of tasks performed by a model Subject 

via a movement recording component having a model 
plurality of joints; 

extracting a plurality of temporal postural Synergies from 
angular velocities of the model plurality of joints based 
on the performance of the plurality of tasks, wherein the 
plurality oftemporal postural Synergies comprises com 
mon movement primitives associated with the plurality 
of tasks; 

receiving a plurality of control signals from a controlling 
Subject with a neurological disorder, 

controlling a Subset of the plurality of temporal postural 
synergies with the plurality of control signals, wherein 
the plurality of control signals comprises one or more of 
a neurological signal, a muscular signal, or a signal 
received via a peripheral sensor, and 

controlling the movement of the extremity via calculating 
positions of the controlled plurality of joints, wherein 
calculating positions of the controlled plurality of joints 
comprises a processor performing the following steps: 
convolving a Subset of the plurality of control signals 

and the Subset of temporal postural synergies with a 
plurality of finite impulse filters; 

adding an output response from the plurality of finite 
impulse filters that obtains a resultantangular Velocity 
profile; and 

integrating the resultant angular Velocity profile to 
obtain the calculated positions of the controlled plu 
rality of joints. 

2. The method of claim 1, wherein extracting a plurality of 
temporal postural synergies from angular velocities of the 
model plurality of joints based on the performance of the 
plurality of tasks comprises: 

determining a joint angle for each of the model plurality of 
joints based on a result of the plurality of tasks: 

calculating the angular Velocities of the model plurality of 
joints based on the joint angle; 

deriving a plurality of kinematic synergies from the angu 
lar velocities; and 

deriving the plurality oftemporal postural Synergies from a 
Subset of kinematic Synergies from a digital library by 
integrating angular Velocity profiles of the Subset of 
kinematic synergies. 

3. The method of claim 2, wherein prior to deriving the 
plurality of temporal postural Synergies from a Subset of 
kinematic synergies by integrating angular Velocity profiles 
of the subset of kinematic synergies, the method further com 
prises: 

forming the digital library of kinematic synergies by Stor 
ing the plurality of kinematic synergies; and 

retrieving the Subset of kinematic synergies from the digi 
tal library of kinematic synergies. 

4. The method of claim 3, wherein the plurality of kine 
matic synergies are derived using linear and/or non-linear 
dimensionality reduction methods. 

5. The method of claim 1, wherein the plurality oftemporal 
postural synergies are synchronous synergies and are 
extracted from the model Subjects, the model Subjects having 
no neurological disorders. 

6. The method of claim 5, wherein the angular velocity 
profile of the movement of the extremity is a weighted linear 
combination of the synchronous synergies extracted from 
recordings where impulses of the synchronous synergies 
occur at the same time. 

7. The method of claim 6, wherein the control signals are 
invasive or non-invasive brain signals and/or muscular signals 
and/or signals detected by peripheral sensors. 
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8. The method of claim 7, wherein extracting a plurality of 
temporal postural Synergies from angular Velocities of a 
model plurality of joints based on the performance of the 
plurality of tasks comprises: 

determining a joint angle for each of the model plurality of 5 
joints based on a result of the plurality of tasks: 

calculating the angular Velocities of the model plurality of 
joints based on the joint angle; 

deriving kinematic synergies from the angular velocities; 
and 

deriving the temporal postural Synergies from a Subset of 
kinematic synergies from a digital library by integrating 
angular Velocity profiles of the Subset kinematic syner 
gies. 

9. The method of claim 8, wherein prior to deriving the 
plurality of temporal postural Synergies from the Subset of 
kinematic synergies by integrating angular Velocity profiles 
of the subset of kinematic synergies, the method further com 
prises: 

storing the plurality of kinematic synergies thereby form 
ing the digital library of kinematic synergies; and 
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retrieving the Subset of kinematic synergies from the digi 

tal library of kinematic synergies. 
10. The method of claim 9, wherein the plurality of kine 

matic synergies are derived using linear and/or non-linear 
dimensionality reduction methods. 

11. The method of claim 1, wherein the plurality of tem 
poral postural Synergies are asynchronous synergies 
extracted from the model Subjects using linear and/or nonlin 
ear dimensionality reduction methods, the model Subjects 
having no neurological disorders. 

12. The method of claim 11, wherein the angular velocity 
profile of the movement of the extremity is a weighted linear 
combination of the asynchronous synergies extracted from 
recordings where impulses of the asynchronous synergies 
occurat different times. 

13. The method of claim 12 further comprising varying a 
weight of the asynchronous synergy and a time shift of the 
asynchronous synergy according to a type of task. 

14. The method of claim 13, wherein the control signals are 
invasive or non-invasive brain signals and/or muscular signals 
and/or signals detected by peripheral sensors. 
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